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Abstract
Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue
section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous
imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to
richer insights into cellular interactions and disease. However, high-plex imaging can be slower
and more costly to collect, limiting its applications, especially in clinical settings. We propose a
machine learning framework, 7-UP, that can computationally generate in silico 40-plex CODEX
at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular morphology. We
demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and
predicting patient survival outcomes. Furthermore, 7-UP’s imputations generalize well across
samples from different clinical sites and cancer types. 7-UP opens the possibility of in silico
CODEX, making insights from high-plex mIF more widely available.

Introduction
The tissue microenvironment (TME) is a complex milieu comprising many cell types and
heterogeneous cell states. Common techniques for understanding the TME like mass
spectrometry1 and flow cytometry2 allow for bulk measurements of many cell biomarkers but
discard valuable spatial information in the process. Recently, multiplexed molecular imaging
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assays have enabled the quantification of cell types and molecules in their native tissue context.
Commercial multiplexed immunofluorescence (mIF) systems are increasingly commonplace in
clinical diagnostic and prognostic settings3 but are typically limited to quantifying between 1 and
7 biomarkers4.

More recently, mIF techniques such as co-detection by indexing (CODEX)5 quantify 40 or more
markers in situ, allowing a richer and more holistic characterization of the TME and its
underlying cell types and disease processes. However, CODEX systems are significantly more
costly and time-consuming to run when compared to most low-plex systems, which limits their
wider adoption in clinical settings.

To address this limitation, we introduce 7-UP, a machine learning framework that generates in
silico high-plex mIF (30+ biomarkers) from only a panel of seven experimentally measured
biomarkers. Whereas typical 7-plex measurements can only resolve up to 5-7 distinct cell
types3, using the imputed markers from 7-UP enable the identification of up to 16 cell types.
Moreover, the imputed biomarker expressions can predict complex clinical outcomes with
accuracy comparable to using experimental measurements from CODEX. 7-UP generalizes to
new cancer types and samples that come from different clinical sites than its training data. Our
approach highlights a significant opportunity to use machine learning toward inferring
high-dimensional molecular features from commonly available low-plex imaging data.

Imputation techniques have been applied to missing data in genomics6–8 and transcriptomics9,10

datasets, as well as in mass spectrometry and shotgun proteomics6,11,12 data. Deep learning has
been used to extract morphological and spatial features from pathology H&E-stained slides13–16,
and in turn, enabled in silico IHC staining17 and spatial transcriptomics18. More recently,
computational methods have been developed for improving cell-type classification in
CODEX-acquired data19 and augmenting with spatial information in particular20. To date, our
work is the first to demonstrate the effectiveness of deep-learning-based morphological feature
extraction toward clinically meaningful multiplex immunofluorescence imputation.

Results
7-UP summary
The 7-UP framework consists of the following pipeline. We first select an optimal panel of 7
biomarkers from the full CODEX biomarker panel. While the choice of which biomarkers to
measure in a 7-plex imaging workflow can depend on clinician preference and disease subtype,
we use a previously validated approach, Concrete autoencoder22, for automatically selecting
informative biomarkers. This approach identified DAPI, CD45RA, CD15, pan-cytokeratin
(PanCK), HLA-DR, Ki67, and Vimentin (“Main panel” in Figure 1), which we use in our main
experiments. We additionally report results using an alternative panel commonly used in
immunology4,23 consisting of DAPI, CD4, CD15, PanCK, CD8, Ki67, and Vimentin ( “Alternative
panel” in Figure 1), and the results are consistent with the main panel. Next, we extract cell-level
spatial features across each of these seven biomarkers in the CODEX dataset. To do this, we
train a convolutional neural network24 to learn spatial and morphological features from cell
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image patches generated from the full samples. We combine cell-level spatial features with
average biomarker expression values to train a machine learning regression model25 to impute
the expression of the 30+ additional biomarkers.

To validate the veracity of the 7-UP imputed expressions, we use them to predict cell types and
patient outcomes. We replace CODEX-measured expressions with the 7-UP imputed
expressions in a k-nearest neighbors algorithm used to determine cell type ground truth to
generate cell type predictions. In turn, these predicted cell types are used as input in place of
the CODEX-measured ground truth cell types in a graph neural network26 trained to produce
sample-level predictions for patient-level survival status, HPV status, and recurrence.

Application of 7-UP to head-and-neck and colorectal cancer datasets
Our primary dataset consists of 308 samples from 81 patients with head and neck squamous
cell carcinomas at the University of Pittsburgh Medical Center (UPMC-HNC). Two external
validation datasets are used: a head and neck squamous cell carcinomas dataset with 38
samples from 11 patients from Stanford University (Stanford-HNC) to demonstrate
generalization on the same disease, and a colorectal cancer dataset with 292 samples from 161
patients from Stanford University (Stanford-CRC) to demonstrate generalization to another
disease. The number of samples, patients, coverslips, and total cells in each dataset is
described in Table 2. UPMC-HNC is chosen as the primary training and evaluation dataset as it
contains the largest number of samples, coverslips, and total cells. We evaluate our models on
held-out coverslips not seen during training to assess model robustness to technical artifacts
across coverslips.

Concordance of biomarker imputation
7-UP achieves an average Pearson correlation coefficient (PCC) of 0.534 across all predicted
biomarkers in the UPMC-HNC dataset (Table 1). The predictive performance also holds across
an alternative input panel (PCC of 0.529). Immune-related biomarkers like CD4, CD20, and
CD45 are most accurately predicted, with PCCs above 0.70 (examples shown in Figure 2a).

Predicting cell types from imputed biomarkers
We also measure the reliability of the imputed biomarkers by using them for determining cell
types since cell type identification is a common task in analyses of CODEX data. Toward this
task, 7-UP achieves an F1 score of 0.727. The full CODEX-measured biomarker panel defines
the ground truth labels in both models.

We examine how accurately the predicted cell types retain local cell neighborhood structures by
comparing the spatial adjacency matrices (Supp. Figure 2). These were produced by projecting
the cells into a graph representation described in Zheng et al.26 and then counting the relative
frequencies of spatially adjacent cells. Comparing the two matrices shows that local clusters of
cell types are well preserved (Root-mean-square distance of 0.0357). We additionally verify that
the predicted cell types closely match the true distribution by projecting the predicted and
CODEX-measured biomarker expressions using UMAP and visualizing the cell type labels
(Figure 2b).
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Predicting patient phenotypes from predicted cell types
To validate the reliability of the cell types determined by 7-UP imputed biomarkers, we use them
to predict three patient phenotypic outcomes: HPV infection status, primary outcome (survival),
and recurrence of disease. To this end, we use a graph-based deep learning model26 trained
using ground truth cell types from the UPMC-HNC dataset to predict these three binary
outcomes. To evaluate the veracity of our predicted cell types, we replace the
CODEX-measured cell types used to make the baseline prediction with the predicted cell types
as input to the model. The results demonstrate that the imputed cell types can predict
phenotypic outcomes at a level comparable to the ground truth labels (Figure 4).

Cross-site and cross-disease generalization
Finally, we evaluate our model on another head and neck cancer dataset (Stanford-HNC) and a
colorectal cancer dataset (Stanford-CRC). The biomarker imputation and cell type prediction
performances remain stable (e.g. for Stanford-CRC: 0.489 vs 0.583 PCC and 0.614 vs 0.605
F1) even when evaluated on a different clinical site and cancer type (Figure 5), indicating that
the model’s performance is robust when evaluated on unseen data.

Training on only one coverslip
Because highly multiplexed fluorescence imaging platforms like CODEX are more
resource-intensive than standard fluorescence immunochemistry imaging, one might wish to
image only one coverslip with CODEX, and then train a model to impute additional biomarkers
on other coverslips imaged with a 7-plex system. We experiment with only training the
imputation model on one coverslip (24% of the entire training data), and report that performance
from this model retains the same cell type prediction performance (Supp. Table 1a). Even in this
low data regime, the model can still robustly impute cell types without sacrificing performance.

7-UP leverages cell morphology
Finally, we verify that the deep learning model learns morphology features useful for imputing
biomarkers for single cells beyond the mean expression values. Using only average cell
expression values as input features, our method achieves an average Pearson correlation
coefficient (PCC) of 0.474 across all predicted biomarkers in the UPMC-HNC dataset. When
adding additional morphology features, the performance improves to 0.534 PCC (Table 1).
Similarly, when determining cell types, a model which uses only the average expressions of
seven biomarkers achieves an average patchwise weighted F1 score of 0.667. In contrast, the
model with biomarkers imputed using morphology features achieves an F1 score of 0.727.

Additionally, to demonstrate the usefulness of the context channels used in the deep learning
model, we performed an ablation experiment (Supp. Table 1b) where we evaluated a model
trained using the context channels, and a model trained without (only using the single-cell
image). We observe an improvement (0.016 PCC and 0.014 F1) with the inclusion of context
channels, indicating that features from the cell’s neighborhood are useful in determining
information about the cell.
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As an example, classification performance on vessel cells increases from 0.44 to 0.67 F1 score
when including morphological features. Of the cells incorrectly classified without morphology,
70% were predicted as stromal cells. Supp. Figure 2 visualizes examples of cells that were
corrected with the inclusion of morphology. Though vessel cells and stromal cells share a similar
protein expression composition (Vimentin, aSMA, CollagenIV, CD47), vessel cells uniquely
express CD31 and CD34. Indeed, the model with morphology more accurately predicts CD31
(PCC: 0.561 vs 0.416) and CD34 (PCC: 0.586 vs 0.429). We can infer that the model was able
to better predict the expression of these two biomarkers with morphological information of the 7
biomarkers than with only average expression.

Discussion
High-plex immunofluorescence techniques like CODEX enable an unprecedented
understanding of TME and tissue architecture but have seen limited clinical (diagnostic or
prognostic) utility due to their cost and data generation times. On the other hand, standard IF or
immunostaining workflows, which image between 1 to 7 biomarkers, are widely available. 7-plex
mIF panels are becoming more common in clinical settings. Our proposed method aims to
unlock the richer TME representations available with CODEX by up-leveling existing 7-plex data
through learning biomarker co-expression and morphological patterns.

7-UP demonstrates that a small subset of biomarkers can contain sufficient signal to reconstruct
a much larger subset of biomarkers. For instance, some biomarkers regularly co-express with
other biomarkers (e.g., CD20 and CD21 in B cells), while others can be inferred from the cell’s
morphology (e.g., the nucleus and cytokeratin expression of a proliferating tumor cell may
indicate Ki67 expression). Indeed, our results suggest that learning these relationships is useful
and that the imputed biomarker expressions are reliable enough to be used in place of
CODEX-measured expressions for the primary tasks of resolving cell types and predicting
phenotypic outcomes.

The panel selection procedure in Figure 1a demonstrates one method for selecting input
biomarkers, which does so by maximizing the average reconstruction accuracy across all other
CODEX-measured biomarkers. In scenarios where multiplex imaging data has been previously
imaged and collected, 7-UP can be deployed directly on the pre-defined subset of biomarkers,
thus removing the need for panel selection.

The ability to determine a subset of biomarkers in silico 1) gives users immediate access to a
larger set of biomarkers beyond what has been experimentally measured, and 2) frees up
resources to measure more novel and biologically relevant biomarkers. Thus, in addition to
up-leveling 7-plex systems, 7-UP can also push CODEX systems from ~40 biomarker
measurements to 60 or more, enabling even greater cell type differentiation and disease
characterization.

Limitations While some biomarkers are imputable with a high degree of confidence, others are
not as easily predicted. This is a consequence of the inherent limitations of a 7-plex panel.
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Intuitively, increasing the panel beyond seven biomarkers would increase the number of strongly
predicted biomarkers, but would also surpass the technical limitation of most clinical multiplex
workstations. Additionally, since biomarkers are differentially expressed based on their unique
TME, training on a variety of disease contexts is key to ensuring generalizability. Picking an
informative panel of biomarkers is also an important decision, and ought to reflect the nature of
the disease and TME that one wishes to understand.

Methods
CODEX data collection
All samples are prepared, stained, and acquired following CODEX User Manual Rev C
(https://www.akoyabio.com).

Coverslip preparation: Coverslips are coated with 0.1% poly-L-lysine solution to enhance
adherence of tissue sections prior to mounting. The prepared coverslips are washed and stored
according to the guidelines in the CODEX User Manual.

Tissue sectioning: formaldehyde-fixed paraffin-embedded (FFPE) samples are sectioned at a
thickness of 3-5 μm on the poly-L-lysine coated glass coverslips.

Antibody conjugation: Custom conjugated antibodies are prepared using the CODEX
Conjugation Kit, which includes the following steps: (1) the antibody is partially reduced to
expose thiol ends of the antibody heavy chains; (2) the reduced antibody is conjugated with a
CODEX barcode; (3) the conjugated antibody is purified; (4) Antibody Storage Solution is added
for antibody stabilization for long term storage. Post-conjugated antibodies are validated by
SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and quality control (QC) tissue testing,
where immunofluorescence images are stained and acquired following standard CODEX
protocols, then evaluated by immunologists.

Staining: CODEX multiplexed immunofluorescence imaging was performed on FFPE patient
biopsies using the Akoya Biosciences PhenoCycler platform (also known as CODEX). 5 μm
thick sections were mounted onto poly-L-lysine-treated glass coverslips as tumor microarrays.
Samples were pre-treated by heating on a 55 ℃ hot plate for 25 minutes and cooled for 5
minutes. Each coverslip was hydrated using an ethanol series: two washes in HistoChoice
Clearing Agent, two in 100% ethanol, one wash each in 90%, 70%, 50%, and 30% ethanol
solutions, and two washes in deionized water (ddH2O). Next, antigen retrieval was performed
by immersing coverslips in Tris-EDTA pH 9.0 and incubating them in a pressure cooker for 20
minutes on the High setting, followed by 7 minutes to cool. Coverslips were washed twice for
two minutes each in ddH2O, then washed in Hydration Buffer (Akoya Biosciences) twice for two
minutes each. Next, coverslips were equilibrated in Staining Buffer (Akoya Biosciences) for 30
minutes. The conjugated antibody cocktail solution in Staining Buffer was added to coverslips in
a humidity chamber and incubated for 3 hours at room temperature or 16 hours at 4 ℃. After
incubation, the sample coverslips are washed and fixed following the CODEX User Manual.
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Data acquisition: Sample coverslips are mounted on a microscope stage. Images are acquired
using a Keyence microscope that is configured to the PhenoCycler Instrument at a 20X
objective. All of the sample collections were approved by institutional review boards.

Datasets: The UPMC-HNC and Stanford-HNC datasets have one held-out coverslip for model
validation and one held-out coverslip for model evaluation. The Stanford-CRC dataset has half
of one coverslip randomly split and held out for model validation and one held out for model
evaluation.

Choice of Input Biomarkers
Our 7-UP framework can be applied to any set of input biomarkers, though the imputation
performance improves if the input markers are particularly informative. Concrete autoencoder22

is an unsupervised neural network that determines the subset of biomarkers that are most
useful for reconstructing the entire CODEX panel (Figure 1a). The Concrete autoencoder takes
a full set of input biomarker expressions and outputs a feature importance score for each
biomarker. This approach achieves very similar results when compared to a naive greedy
algorithm (iteratively including the most important biomarkers in the model), but is more
computationally efficient.

Biomarker expression preprocessing
Single cell expression was computed for each biomarker by 1. applying a deep learning cell
segmentation algorithm (DeepCell)27 on the DAPI biomarker channel (nuclear stain) to obtain
nuclear segmentation masks; 2. successively dilating segmentation masks by flipping pixels
each time with a probability equal to the fraction of positive neighboring pixels (repeated 9
times); 3. computing the mean expression value across pixels within the single cell; and 4.
normalizing the expression values across all cells in a sample using quantile normalization and
arcsinh transformation followed by a z-score normalization:

𝑧𝑠𝑐𝑜𝑟𝑒(𝑎𝑟𝑐𝑠𝑖𝑛ℎ( 𝑥
5𝑞

0.2
(𝑥) ))

Where is defined given μ and σ, the mean and standard deviation across all cell𝑧𝑠𝑐𝑜𝑟𝑒
expression values in the sample:

𝑧𝑠𝑐𝑜𝑟𝑒(𝑥) =  𝑥−µ
σ

is the vector of a biomarker's values in a sample, is the inverse hyperbolic sine𝑥 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 
function; and is the 20th percentile of .𝑞

0.2
(𝑥) 𝑥

Image patch generation
After preprocessing (tile & cycle alignment, stitching, deconvolution, and background correction)
CODEX data is available as multichannel OME-TIFF files, with each image channel
corresponding to the fluorescence signal (expression) of a distinct biomarker probe.  To prepare
the input image patches for the deep learning model, we perform the following: All pixel values
for a biomarker in a sample are normalized using ImageJ’s AutoAdjust function28. An image
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patch (224px by 224px) is then generated for each cell, for each biomarker, in the region. Each
patch consists of three channels. The first channel contains the segmented cell only, rescaled
3x, centered with zero padding around the cell; the second channel contains a crop of the
neighborhood (~20 cells) centered around the cell (~84 μm) at 1x scaling, and the third channel
contains a crop of the neighborhood (~80 cells) at 0.5x scaling also centered around the cell
(~42 μm). These channels are visualized in Figure 1b. As a reference, all coverslips are imaged
at a resolution of 0.3775 μm per pixel.

Deep learning model
We trained a ResNet-5024 deep learning model to learn cell shape features as well as spatial
information of cell neighborhoods. We find that training the model on cell type classification
enables it to learn an effective morphology featurizer. We start with a model with weights
pre-trained on the ImageNet dataset29. The model takes as input a 224x224x21 size tensor,
where the 21 channels correspond to stacking 7 input biomarkers with 3 feature channels each.
The last layer is modified to classify over one-hot encoded cell types. The model is trained with
categorical cross-entropy loss, and a cell-wise F1 score is computed at each validation step.
The learning rate is initialized at 1e-4, and decays by a factor of 0.2 if the validation F1 score
does not improve over 5000 steps. Training stops after 75k steps of no improvement, and the
model with the highest validation F1 score is chosen. To improve model robustness, we trained
an ensemble of five identical models with different random weight initializations and computed
the mean prediction across all models to obtain a final model score. All models were
implemented and trained using Pytorch30, a Python deep learning framework.

Biomarker imputation model
XGBoost25, a gradient boosting decision tree algorithm shown to achieve top-performance in
tabular data regression, is used for imputing single-cell biomarker expressions. The model takes
as input the cell expression values of the seven input biomarkers, along with, in the case of
adding morphology information, a probability vector corresponding to cell type predictions from
the deep learning model. It is then trained to jointly predict the expression values of the
remaining biomarkers. We find that directly using the output probabilities improves model
performance more than using the final featurization layer.  We used squared error loss, a
learning rate of 0.1, 500 estimators, a max depth of 3, a per-tree column sampling of 0.7, and
GPU accelerated training. All other hyperparameters are default settings in the XGBoost Python
library.

Dimensionality reduction
To visualize the concordance of CODEX-measured and imputed biomarkers, we randomly
sample 10,000 cells with CODEX-measured biomarker values and 10,000 cells with imputed
biomarker values and fit a UMAP31 dimensionality reduction model on the combined set. We
then plot the projected 2D data points separately and color them by ground truth cell types,
expression of CD45, and expression of CD20 (the latter two use the 75th percentile expression
value as a binary threshold). The UMAP model is trained using a GPU-accelerated
implementation32 with default settings.
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Patchwise Metrics
Given the naturally high degree of intercellular expression variation within local neighborhoods
of cells, we report biomarker and cell type predictions aggregated within a local cell
neighborhood. Supp. Figure 2 shows the relationship between the choice of cell neighborhood
patch size (in pixels) and the average PCC and F1 score. The patchwise PCC of a biomarker is
computed as the Pearson correlation coefficient between the CODEX-measured and imputed
patchwise average expressions. Patchwise F1 is computed by considering a patch as positive if
at least one cell is assigned to that cell type, and then calculating the F1 score across patches.

Cell type ground truth and predictions
To produce cell type labels, we first obtained a cells-by-features biomarker expression matrix -
for each marker, we took the average signal across all pixels in a segmented cell. This matrix
was normalized and scaled as described above, then principal component (PC) analysis was
performed. We constructed a nearest-neighbor graph (k = 30) of cell expression in PC space
with the top 20 PCs, then performed self-supervised graph clustering33 on the result. Clusters
were manually annotated according to their cell biomarker expression patterns. This procedure
was performed on a subset of 10,000 cells and subsequently used to train a kNN algorithm.
This algorithm was used to transfer labels to the entire dataset.

In our experiments where we generate cell type predictions based on the imputed biomarkers,
we use this trained kNN algorithm and substitute the subset of expressions for which we are
imputing with the imputed values from the ML model. Thus, for the UPMC-HNC dataset with 41
total biomarkers, 7 biomarkers will be the CODEX-measured values, and 33 biomarkers will be
imputed.

Survival outcome prediction
Additionally, three phenotypic patient outcomes from the UPMC dataset are evaluated:
survival status (No Evidence of Disease (NED) versus Died of Disease (DOD)), HPV status (a
significant indicator of cancer prognosis), and recurrence (if the cancer recurs within 5 years
after diagnosis).

We used a graph neural network (GNN)-based model26 trained on using cell types to predict
patient phenotypic outcomes. This model transforms the structure of each sample into a graph
network, where cells are connected by edges to neighboring cells. It then pools information
about the neighboring cells’ cell types to output an outcome probability score for each cell. The
sample predictions are generated by averaging the scores across all cells in that sample. We
evaluated models that have been trained on three patient phenotypic outcomes: survival status,
HPV status, and recurrence. To validate the utility of our imputed cell types, we replace the
original annotated cell type labels with the predicted cell types produced from the imputed
biomarkers. The results are reported in Figure 4, where we see that performance on these three
tasks is comparable between using the imputed biomarkers and the CODEX-generated
biomarkers.
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Tables and Figures

Patchwise PCC Patchwise F1

UPMC-HNC Dataset 33 biomarkers 16 cell types

7-UP model (7 biomarkers) 0.474 (0.006) 0.667 (0.002)

7-UP model (7 biomarkers + Morphology)
Main panel 0.534 (0.009) 0.727 (0.002)

7-UP model (7 biomarkers + Morphology)
Alternative panel 0.529 (0.007) 0.739 (0.002)

Table 1: Performance of 7-UP on the UPMC-HNC dataset. Biomarker imputation results are
reported using the average patchwise Pearson correlation coefficient (PCC). Cell type
predictions are reported using the patchwise weighted F1 score. The first row refers to the
model trained without including morphological features in the input. The second and third rows
refer to the models trained with morphological features. The main and alternative panels are
described in the Methods section. Numbers in parentheses indicate the 95% bootstrapped
confidence intervals.
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Figure 1: Overview of the 7-UP Framework. Panel A: From the full CODEX panel of
biomarkers, a Concrete autoencoder selects a subset of 7 biomarkers to reconstruct the full
panel. Panel B: From a full sample (~1000 microns wide), image patches are extracted for each
cell: Cell only, containing the morphology of the cell at 3x scaling, 0.5x, a ~84-micron
neighborhood around the cell, and 1x, a ~42-micron neighborhood around the cell. Panel C&D:
Each cell has three patches produced for each of the 7 biomarkers, totaling 21 patches used as
input to a deep learning model. This model extracts morphological features for each cell, which
are combined with the average expressions of the top 7 biomarkers to predict the average
expressions of the remaining CODEX panel biomarkers using a machine learning regression
model. Panel E: The imputed biomarker expressions (from Panel C&D) are used in place of the
CODEX-generated values in the k-nearest neighbors algorithm used to produce cell-type
ground truth. An example predicted sample is shown. Panel F: Using a deep learning model
trained to predict phenotypic outcomes (Zheng et. al), the predicted cell types are used in place
of the ground truth cell types to produce sample-level predictions for survival status, HPV status,
and recurrence.
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Figure 2: Biomarker imputation concordance on the UPMC-HNC dataset. Panel A:
CODEX-measured versus predicted expressions for three biomarkers: CD4, CD20, and CD45.
Samples shown have average patchwise PCC (Pearson correlation coefficient) scores around
the 50th percentile of all samples. Panel B: A UMAP embedding was performed on the
biomarkers of an equal sample of CODEX-measured and predicted cells. The first column is
colored by the ground truth cell types (legend from Figure 1d); the second and third columns
represent cells that express CD45 and CD20 (colored by expressions greater than the 75th
percentile CODEX-measured value). Panel C: Patchwise PCC across all test samples for each
biomarker. The blue bars represent the performance of a model trained only using average
expression values as input; the orange bars represent the performance of a model trained using
both average expression values and morphology features.
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Figure 3: Cell type predictions closely match CODEX measurements (UPMC-HNC dataset).
Panel A: CODEX-measured and predicted cell types are shown side-by-side on 25th, 50th, and
75th percentile samples (by patchwise F1 score). Panel B: Left: Confusion matrix between the
kNN-determined ground truth cell types (rows) and ML imputed cell type (columns). Right:
Breakdown of patchwise F1 score by cell type. The blue bars represent the performance of a
model trained using only average expression values, and the orange bars represent the
performance of a model trained using both average expression values and morphological
features.
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Area under curve (AUC) Survival status Recurrence HPV Status

Groundtruth biomarkers 0.889 (0.054) 0.887 (0.108) 0.929 (0.036)

Imputed biomarkers 0.841 (0.068) 0.894 (0.102) 0.896 (0.051)

Figure 4: Imputed biomarkers are useful for predicting patient phenotypes (UPMC-HNC
dataset). Top: Three phenotypic outcomes using imputed vs CODEX-measured biomarkers.
AUC score reported (95% bootstrapped confidence interval reported in parentheses). Bottom:
ROC curves of three phenotypic outcomes.
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A. Cross-site generalization performance

Patchwise PCC Patchwise F1

Stanford-CRC dataset 24 biomarkers 16 cell types

with UPMC-HNC model 0.489 (0.024) 0.614 (0.004)

with Stanford-CRC model 0.583 (0.031) 0.605 (0.004)

Stanford-HNC dataset 26 biomarkers 18 cell types

with UPMC-HNC model 0.475 (0.005) 0.757 (0.001)

With Stanford-HNC model 0.545 (0.004) 0.773 (0.001)

Figure 5: 7-UP generalizes well to other data sites and disease types. Panel A: Imputed
biomarker and predicted cell type performance on two external validation datasets
(Stanford-CRC and Stanford-HNC). The UPMC-trained model’s performance is reported on
each dataset, along with a reference model that has been trained on the validation dataset.
Metrics are reported with 95% confidence intervals in parentheses. Panel B: 50th percentile (by
F1 score) samples are shown for CODEX-measured and UPMC model-predicted cell types on
the two validation datasets.
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Supplemental Tables and Figures
A. Context Patchwise PCC Patchwise F1

UPMC-HNC 33 biomarkers 16 cell types

Reference with context 0.523 (0.006) 0.723 (0.002)

Without context 0.507 (0.005) 0.709 (0.002)

B. One coverslip Patchwise PCC Patchwise F1

UPMC-HNC 33 biomarkers 16 cell types

All training coverslips 0.523 (0.006) 0.723 (0.002)

One coverslip (~24% of training data) 0.493 (0.005) 0.715 (0.002)

Supplemental Table 1: 7-UP ablation studies. In Table A, the 7-UP model is trained with only
the “Cell only” channel as described in Figure 1b, thus discarding the two context channels. The
performance of this model is reported in the second row (“Without context”), and compared to a
model trained with all three channels (“Reference with context”). In Table B, the 7-UP model is
trained using only data coming from one coverslip, which represents about a quarter of the total
training data. In both experiments, the ablated model performs comparatively similar to the
reference model.

Dataset No. of samples No. of patients No. of coverslips No. of total cells

UPMC-HNC 308 81 8 2,061,102

Stanford-HNC 38 11 6 1,643,491

Stanford-CRC 292 161 4 632,280

Supplemental Table 2: Descriptions of the three CODEX datasets used for training and
evaluating 7-UP.
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Supp. Figure 1: The effect of patch size (in pixels) on average patchwise PCC and F1. We use
a patch size of 100 pixels when computing patchwise metrics.

Supp. Figure 2: Spatial adjacency matrix agreement. To assess how well the cell type
predictions preserve local neighborhood structures, we consider spatial adjacency matrices,
which show the row-normalized counts of cell-cell neighbors within the UPMC test set.
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Supp. Figure 3: Vessel cells identified with morphology. Three patches of vessel cells were
incorrectly classified as stromal cells but correctly classified with the inclusion of spatial
information. In each patch, the DAPI stain is shown in three spatial scales: the cell morphology
is presented in red, the 1x resolution context around the cell is shown in blue, and the 0.5x
resolution context around the cell is shown in green.

Supp. Figure 4: A breakdown of patchwise PCC per biomarker is visualized for each cross-site
evaluation.
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