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Abstract:
The SARS-CoV-2 (COVID-19) virus has caused a devastating global pandemic of

respiratory illness. To understand viral pathogenesis, methods are available for

studying dissociated cells in blood, nasal samples, bronchoalveolar lavage fluid, and

similar, but a robust platform for deep tissue characterisation of molecular and

cellular responses to virus infection in the lungs is still lacking. We developed an

innovative spatial multi-omics platform to investigate COVID-19-infected lung

tissues. Five tissue-profiling technologies were combined by a novel computational

mapping methodology to comprehensively characterise and compare the

transcriptome and targeted proteome of virus infected and uninfected tissues. By

integrating spatial transcriptomics data (Visium, GeoMx and RNAScope) and

proteomics data (CODEX and PhenoImager HT) at different cellular resolutions

across lung tissues, we found strong evidence for macrophage infiltration and

defined the broader microenvironment surrounding these cells. By comparing

infected and uninfected samples, we found an increase in cytokine signalling and

interferon responses at different sites in the lung and showed spatial heterogeneity in

the expression level of these pathways. These data demonstrate that integrative

spatial multi-omics platforms can be broadly applied to gain a deeper understanding

of viral effects on cellular environments at the site of infection and to increase our

understanding of the impact of SARS-CoV-2 on the lungs.
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Introduction
The need for tissue profiling at sites
of infection
The COVID-19 pandemic has led to
over 618 million total infections and
more than 6.5 million deaths globally
(https://coronavirus.jhu.edu/, as of Oct
2022). While the lungs are the main
site affected by the severe acute
respiratory syndrome coronavirus 2
(SARS-CoV-2), the high degree of
heterogeneity in SARS-CoV-2 infected
lung cells at different lung locations is
not well understood (1). Whilst
vaccinations have helped reduce
disease severity and viral spread, the
occurrence of viral-induced fibrosis,
which can lead to complications in the
lung and other organs, is still common
(2, 3). Cytokines such as interleukin-6
(IL-6) and transforming growth factor-β
have been shown to contribute to
pulmonary fibrosis (4) suggesting that
understanding of the interactions
between immune and other cells in the
infected tissue are required to prevent
infection-induced tissue damage.
However, it is still largely unclear how
inflammatory immune cells become
activated and induce damage in
organs such as the lungs. Moreover, in
preparation to fight future pandemics,
robust clinical research platforms are
needed to rapidly determine the
responsible pathogens, characterise
the host immune response and define
the pathogenic mechanisms at both
the cellular and molecular levels
directly from patient tissues (5, 6).

Multi-omic assessment provides a
comprehensive view of cellular and
molecular pathogenesis of the virus

During the COVID-19 pandemic,
genomics and bioinformatics have
proven to be important public health
tools in applications ranging from
screening to tracking variants (5, 7, 8).
Multi-omics enables the systematic
understanding of virus pathogenesis
(8). The successful application of an
mRNA vaccine as the main vaccine
solution globally further suggests the
need for more transcriptomics
research at the scale of either the
targeted gene/gene-set or
transcriptome-wide levels.
Furthermore, adding proteomics,
phospho-proteomics and ubiquitination
data can reveal the role of
post-transcriptional regulation and
virus-host interactions at protein level
(9, 10). Application of single-cell
technologies enables viral effects to be
studied across organs and reveals
cell-specific immune responses (11,
12). In addition, multi-omics integration
increases statistical power to analyse
small patient cohorts, resulting in
reliable patient classification models
using molecular markers (13)

A spatial multi-omics approach to
experimentally and computationally
study infected lung tissues
So far, molecular studies of COVID-19
infection have mainly been limited to
studying dissociated tissues, blood
samples, nasal swabs, and
bronchoalveolar lavage fluid, but viral
activity and spread within the lungs
have not been fully investigated (12,
14). Spatial-omics technologies are an
area of rapid development resulting in
the swift evolution of methods to profile
RNA or protein with spatial context
within infected tissues, and increasing
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tools for analysis. Spatial analysis
shows the upregulation of interferon
(IFN) type I response (15) and
upregulation at the alveolar regions of
IFN-α, IFN-γ and oxidative
phosphorylation pathways (11).
However, each spatial technology
presents unique benefits and
limitations with regards to detection
sensitivity and resolution, background
signal, and the number of molecules
that can be measured (16). In this
context, using independent
technologies in parallel is required to
examine all possible genes and cell
types and to cross-validate
observations at protein and RNA
levels.

Here, we report one of the first studies
to implement multi-modal spatial
technologies to study COVID-19
response. We applied five
spatial-omics technologies to the same
tissue biopsies to provide
complementary information about RNA
and protein expression at different
genetic resolutions (ranging from as
many as >20,000 genes to a small set
of six curated proteins). Spatial context
was retained for all technologies. We
spatially profiled blood vessels, lung
alveolar type II pneumocytes (T2),
immune regions, and epithelial tissue
regions, comparing lung samples from
patients with and without

SARS-CoV-2, and those with high and
low levels of SARS-CoV-2 viral mRNA
signal. Importantly, we developed a
computational pipeline to enable
spatial integration of protein and RNA
data across tissue sections. The
integration and comparisons revealed
cell types and molecular pathways of
potential importance to virus
pathogenesis.

Results

Building a multi-omics tissue atlas
of COVID-19
To comprehensively understand
changes in spatial organisation of cells
in lung tissue sections infected by
SARS-CoV-2 at the RNA, protein and
cell type levels, we applied five
different spatial technologies to serial
sections of tissue microarrays (TMAs)
generated from patient biopsies (Fig
1). The key sample set in this study
included four COVID-19-infected
samples (referred to as LN1 to LN4),
which were each measured using all
five technologies. We also included
additional uninfected samples for
certain technologies, in total
measuring six uninfected samples for
CODEX, five for GeoMx, and nine for
PhenoImager HT (Fig 1).
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Figure 1. A spatial multi-omics approach to mapping molecular and cellular responses to
SARS-CoV-2 infection in the lungs. Five complementary spatial RNA and protein
technologies were applied to the same lung core biopsies. Adjacent tissue sections (CODEX
and Visium) were mapped for data integration across modalities. In addition to the four core
biopsy samples captured with all five data types, we profiled additional samples totalling 13
for Phenoimager HT, nine for GeoMX, four for RNAScope, six for Visium and 10 for CODEX.
Together, the multimodal dataset enables deep comparison between COVID-19 and normal
healthy lung tissues and viral high vs low viral samples. Representative tissue images from a
single COVID-19-infected sample, LN2, are shown in each segment.
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To detect the presence of
SARS-CoV-2 mRNA signalling the four
core biopsy samples (Fig S1a), we
first applied RNAScope to target the
SARS-CoV-2 spike mRNA, followed by
quantification and localisation of the
virus by our STRISH pipeline (17).
This analysis classified samples as
two viral mRNA signal high- and two
viral signal low- samples and also
defined the spatial location of the virus
within lung tissues (Fig S1b). We used
this classification in subsequent
analyses comparing molecular
differences between samples based
on differing viral mRNA signal. To
compare responses to infection at the
transcriptional level in an unbiased
manner, we produced Visium data
from the four core biopsy samples,
which after pre-processing captured
non-zero gene expression data for
17,680 genes, with the average
number of genes per Visium spot
ranging from 564 to 2,698 across a
total of 129 to 969 spots per biopsy. To
uncover gene expression changes
across different selected
morphological regions, we applied
GeoMx whole transcriptome atlas
(WTA) technology for five uninfected
and four COVID-19 patients (total 49
regions of interest; ROIs).
Approximately 18,000 genes were
measured across four morphological
categories annotated by a pathologist
as Blood vessel, T2 (Type II
pneumocytes), Immune, and Epithelial
regions. While RNAScope, Visium and
GeoMx modalities captured cellular
RNA content, we also measured

protein expression using CODEX for
six uninfected and four
COVID-19-infected samples. A total of
36 proteins were captured for each
sample. Furthermore, high-resolution
multiplexed protein imaging via
PhenoImager HT was performed to
detect six key immune markers,
namelyCD56 (NK cells), IFI27, CD15
(neutrophils), CD66b (granulocytes),
CD8 (cytotoxic T cells), and CD3 (total
T cells). Together, the five
complementary technologies form a
unique spatial multi-omics dataset to
unbiasedly study transcriptional and
proteomic changes in COVID-19
responses in lung tissues and between
patients in an unbiased manner (Fig
1).

Spatial distribution and changes in
cell type composition of
COVID-19-infected and uninfected
lung tissues
Computational clustering, annotation,
community detection and
deconvolution methods were applied
to the five data types to compare cell
types across the four
COVID-19-infected lung samples.
Histological features were captured
using H&E imaging from Visium data
(Fig S1a), corresponding to samples
with high (LN1 and LN3) and low (LN2
and LN4) viral signal (Fig S1b). Spatial
cell type distribution is shown in Fig S1
for the five data types, including
Visium (Fig S1c; Fig S4), CODEX
(Fig S1d), PhenoImager HT (Fig
S1e-f), and GeoMX (Fig S1g-i)
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We first sought to map the major lung
cell types in spatial context within the
Visium data using label transfer (18)
based on an intermediate-level cell
type annotation from a published
scRNASeq COVID-19 atlas (19). We
identified 11 dominant cell types, three
of which were shared across all four
patient samples (airway epithelial cells,
fibroblasts, and plasma cells) (Fig
S4b). Molecular gene signatures for
two key cell types, namely airway
epithelial cells and smooth muscle
cells, highlight two anatomical features
in one tissue section (Fig 2b-c).
These molecularly-defined structures
matched closely with anatomical
structures visible in the underlying
H&E image (Fig S1a). These
structures were not detected in other
samples using either morphological or
molecular data, suggesting that the
cell type detection in Visium data is
highly tissue-specific. From GeoMx
data, we uncovered high heterogeneity
in cell type composition across
different lung regions including blood
vessels, epithelium, type II
pneumocytes-rich regions, and
immune-rich regions (Figure S1i).

We performed further cell type
composition comparisons between
COVID-19-infected and uninfected
samples using PhenoImager HT (Fig
S1 e-f) and GeoMx deconvolution data
(Fig S1h-i). Consistently, both
PhenoImager HT and GeoMx data
suggest a significant increase in NK
cells in COVID-19-infected samples
compared to uninfected samples (Fig
S1f-g). The GeoMx data also
suggested that the infected samples
had more CD4 T cells than uninfected

samples (Fig S1g,i); these cell types
were not captured by the PhenoImager
HT protein panel. While CD8 T cells
were significantly higher in COVID-19
samples based on PhenoImager HT
data, this difference was not apparent
in the GeoMx data (although the
median gene expression value for
relevant markers was indeed higher in
COVID-19 samples) (Fig S1g-i).
CODEX RNA data also showed higher
expression of the CD8 T cell activation
marker, CD107a in infected patients
(Fig S7). The increase in CD8 T cell
numbers has been previously shown in
COVID-19 studies using single cell
data analysis (12). Similarly, the
PhenoImager HT data showed higher
neutrophils (marked as CD66+) in
COVID-19 samples, but this trend was
not clear in the deconvolution results
from GeoMx data (Fig S1g-i).
Exacerbated neutrophil response in
COVID-19 patients has been
previously observed (20). Overall,
GeoMx data appeared to under detect
the difference in CD8 T cells and
neutrophils. This may be due to the
fact that the CD8 and CD66 protein
markers were used directly as
definitive classifiers for CD8 T cells
and neutrophils for CODEX data, while
these two cell types were inferred by
combinatorial signatures of multiple
genes in GeoMx data.

Differential gene activity underlying
high- and low-viral COVID-19
infection
We detected a total of 2,132 genes in
the Visium data whose expression
differed between samples with high-
and low- mRNA viral signal. This total
included 115 genes that were
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upregulated in the high-viral samples
and 2,017 genes that were
upregulated in the low-viral sample
(Fig S4c-d). Interestingly, these gene
sets could potentially be used as
signatures for classifying tissues with
high vs low virus signal, as we
observed similar enrichment of the
low-viral gene signature in two
independent Visium samples from a
lung tissue microarray which were
shown by RNAScope to have a low
viral mRNA signal(Fig S6). Further, we
found that the suite of genes
upregulated in the high-virus samples
was enriched in pathways associated
with immune function. For instance,
the differentially expressed gene list
was enriched for immune-related gene
ontology (GO) terms relating to
interferon response (Fig S4e), antigen
presentation, chemokine signalling,
and regulation of viral genome
replication (Fig S4f). This pathway
level finding is not only consistent with
previous reports (11, 12, 15, 20), but
also extends the associated gene list
to include potential new candidate
genes which were not detectable in by
previous analysis but were identified
using the transcriptome-wide Visium
assay.

Using GeoMx data, we performed an
unsupervised approach to identify
those of the 18,000 captured genes
that were differentially expressed

between COVID-19 vs uninfected
samples. The top genes upregulated in
COVID-19 infected samples compared
to uninfected samples included an
MHC class I gene B2M, a cytokine
macrophage migration inhibitory factor
CD74, inflammatory gene LAP3, and
genes controlling alveolar surface
tension like SFTPA2 and SFTPB (Fig
S2e). We also compared the
differentially expressed genes to three
curated lists of COVID-19-relevant
genes, namely those associated with
interferon responses, apoptosis
responses, and prognostic
markers(Fig S2a-c). Several apoptosis
markers like CASP4, BAK1, and BAX
were significantly upregulated in the
infected samples (Fig S2a). A range of
some, but not all, known interferon
markers were also upregulated in our
data, including IFI6, IFIT1, LY6E, and
IFR7 (Fig S2b). Among the 11
potential prognostic markers
investigated, we found four of them to
be highly expressed in COVID-19
samples.

Top upregulated genes from a further
unsupervised comparison between
high vs low viral mRNA signal samples
included those related to interferon
response (e.g. IFIT3, IRF1 and IFI6)
and to chemokine inflammatory
responses (e.g. CCL8 and CXCL11)
(Fig S2d).

Site-specific comparisons of gene
expression in the lung
with GeoMx region labels, we
compared different tissue types
(Bronchial Epithelium, Blood Vessel,

T2 pneumocyte region) separately in
infected and uninfected samples. This
analysis identified 495 genes that were
consistently upregulated in the infected
samples (Fig S2f). These genes are
significantly enriched in key pathways
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such as signalling by interleukins,
influenza infection, antigen
processing-cross presentation, viral
mRNA translation (Fig S2g, h).

When focussing specifically on T2
(type II pneumocyte)-containing ROIs,
we identified 281 differentially
expressed genes between COVID-19
infected and uninfected samples. This
list included cytokine markers
upregulated in infected samples, such
as CXCL2, CXCL8, CXCL9, CXCL16,
CCL4L2, IL6 and IL18BP (Fig S2f).

Integration of multi-omic imaging
data cross-validates tissue types
and spatial expression
We developed an innovative
computational approach to
automatically integrate spatial
multi-omics data based on first
cross-mapping tissue images and
transferring assayed molecular data
between samples. We here
automatically cross-mapped Visium
and CODEX data via image
registration and spatial coordinate
transformation (Fig 2a). This mapping
allowed us to transfer all 36 CODEX
proteins to the Visium H&E image,
which already provided measurements
of ~17,680 genes. This generated an
integrated dataset anchored by
histological H&E tissue images from

Visium that contained both multiplexed
protein and spatial transcriptomics
data. The three levels of information in
the integrated dataset (tissue
morphological information, RNA
counts and protein expression)
enabled powerful analyses combining
pathological annotation with
transcriptome-wide gene expression
and high-plex protein data.

To evaluate the mapping results, we
examined the identification of airway
epithelial cells and smooth muscle
cells in the LN2 samples, as these two
cell types both appeared in
well-defined histopathological regions
that could be used as a reliable
ground-truth reference. Visual
inspection of the spatial distribution of
Visium cell type scores (Fig 2b-c)
revealed clearly-defined tissue zones
corresponding to the airway epithelium
and smooth muscle tissue,
respectively. The CODEX single-cell
resolution expression of markers for
epithelial cells (PanCK) and smooth
muscle (αSMA) clearly suggested that
the locations of the smooth muscle
and the airway in this data modality
(Fig 2d-e) are consistent with the
Visium cell type annotation. However,
the CODEX signals exhibited greater
spread across the tissue sections.
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Figure 2. Computational transfer of molecular expression from CODEX protein
single-cell data to Visium RNA spot-level data.
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a) Integrative analysis based on automated mapping of CODEX protein data to Visium RNA
data and the Visium H&E tissue image. The three layers show, from top to bottom, Visium
clustering results, CODEX clusters, and the corresponding H&E tissue image captured in the
Visium experiment. Data for sample LN2 is shown.
(b-c) Visium cell type classification showing distribution of cell type scores for epithelial (b)
and smooth muscle (c) cells. Scores were determined using the label transfer method (18)
with reference data from a publicly-available COVID-19 lung atlas (19).
(d-e) CODEX protein expression for epithelial marker PanCK (d) and smooth muscle cell
marker αSMA (e).
(f) Data transfer of CODEX protein marker expression to Visium spots. Left - PanCK
expression from CODEX data mapped within each Visium spot region. Middle - label transfer
scores from Panel b for visual comparison with CODEX protein expression. Right -
comparison between transferred CODEX protein data and Visium RNA-based cell type
labelling. The contingency table shows the consistency in spots classified as airway
epithelial cells in the Visium data and spots that contain the transferred positive PanCK
signal from CODEX data, with Chi-square test (p value < 0.05). The positive PanCK Z-score
signal was used to classify positive vs negative PanCK spots (refer to the method section).
(g) As in Panel f, but comparing CODEX expression of smooth muscle marker αSMA (left)
and Visium smooth muscle annotations (middle).
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For quantitative comparison across
data modalities, we used the
integrated data to map CODEX protein
signals back to coordinates
corresponding to each Visium spot
(Fig 2f-g). This mapping approach
allowed us to directly compare Visium
spots that are classified as epithelial
cells or smooth muscle cells with the
same pseudo-spots in the CODEX
data that are positive or negative for
the PanCK or αSMA markers,
respectively. Assessment of the
resulting contingency tables and
statistical testing showed that the
numbers of true positive and true
negative spots in classifying the two
cell types were significantly higher
than random cell type assignment (Fig
2f-g). This observation suggests that
by integration of independent spatial
transcriptomics and spatial proteomics
data, we can cross-validate cell types
across different -omics technologies.

Macrophage distribution differs with
infection status
Here we used Visium, CODEX, and
GeoMx data to further investigate host
responses to infection by mapping
macrophage distribution and spatial
cytokine expression across the tissue
sections. We compared samples with
high vs low viral signal (LN1 and LN3
vs LN2 and LN4 respectively), and
those with vs without COVID-19
infection (Fig 2f-g).

Both Visium and CODEX data
indicated a strong macrophage
presence across the tissues. However,
macrophage abundance was clearly
enriched in the high viral mRNA signal
samples (LN1 and LN3) in the Visium

data compared to the low viral signal
samples (Fig 3a). We observed that
macrophages tended to cluster around
the airway region in sample LN2 (Fig
2b, d), based on both overall
transcriptional signatures in Visium
data (Fig 3a) or the expression of key
macrophage protein markers CD163,
CD68, CD14 and CD11b in CODEX
data (Fig 3b). Comparison of
COVID-19-infected and uninfected
samples did not indicate a significant
difference in macrophage distribution,
but did highlight that macrophages
distribute surrounding airway
structures (Fig 3b, Fig 4d).

We also used Visium data to
investigate macrophage distribution
within their cellular communities. Here,
we performed unbiased clustering to
group Visium capture spots (Fig 4a).
Due to the non-single-cell resolution of
Visium data, these clusters represent
communities of multiple cell types; we
therefore determined the populations
of cell types present within each
cluster (Fig 4b). We thereby found
communities where macrophages
colocalised with CD8 T cells, B cells,
NK cells and plasma cells (Fig 4b;
clusters 6, 2 and 0). Qualitative
inspection of our label transfer spot
annotation results for sample LN2,
without consideration of the underlying
clusters, further revealed that
macrophages tended to be situated
next to AT1 cells, overlapped NK cells,
B cells and CD8 T cells, and sat near
AT1 and AT2 cells. However,
fibroblasts and macrophages did not
overlap and instead were localised to
different tissue compartments distinct
from  one another (Fig 4c; Fig S5).
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Figure 3. Spatial multi-omics assessment of macrophage and cytokine responses to
SARS-CoV-2 infection.
(a) Mapping of macrophages using Visium data. The colour scale indicates the proportion of
each spot predicted to contain macrophages. Infected lung tissues from four COVID-19
patients are shown. LN1 and LN3 are samples with a high viral mRNA signal, while LN2 and
LN4 have a low viral mRNA signal.
(b) CODEX protein expression of three macrophage markers, showing the sum of the
normalised CODEX signal for CD163, CD68, CD14, and CD11b.
(c) Expression of exemplar cytokine gene CXCL9 in GeoMx data. Log Counts Per Million
(logCPM) transformed fitted values from a glm model are shown for the four COVID-19
samples. Each ROI (white boxes) is annotated with a circle indicating gene expression
(colour) and tissue annotation (letter).
(d) Spatial expression pattern of the CXCL9 cytokine in Visium data for four tissues, two with
low viral signal and two with high viral signal.
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(e) Expression of a curated set of cytokine genes in Visium data. Dot colour indicates gene
expression levels and dot size indicates the percentage of Visium spots in each sample
expressing the gene of interest.
(f) Statistical differences in gene expression for cytokines (IFNB1, IFNL1, CXCL16, TNF, IL6,
CXCL9, CXCL5, CXCL2, CCL20, and CXCL10) in GeoMx data between COVID-19-infected
and uninfected tissues.
(g) Average log CPM-transformed fitted values from a glm model comparing
COVID-19-infected and uninfected tissues for cytokine CXCL2, CXCL9, and CXCL16. Each
ROI (white boxes) is annotated with a circle indicating gene expression (colour) and tissue
annotation (letter).

Spatial multi-omics mapping of
cytokine expression changes at
RNA and protein levels
We then compared cytokine
expression levels across data
modalities, because cytokine storms
have been particularly associated with
severe or lethal clinical outcomes in
COVID-19 patients (21). We focussed
on a curated list of cytokines
previously shown to be active in
COVID-19-infected in postmortem lung
samples (22, 23) (Fig 3c, f-g for
GeoMx, Fig 3d-e for Visium). Overall,
we found a significant increase in
cytokine expression in
COVID-19-infected samples compared
to uninfected samples (Fig 3f-g) and
again in infected samples with high
viral signal compared to those with
lower viral signal (Fig 3e). In particular,
we observed the upregulation of
cytokines CXCL16, IL6 and CXCL2 in
an infection context (Fig 3f). However,
this trend is not universal; both GeoMx
and Visium data suggested that
several other cytokines, including
CXCL20, CXCL5, TNF, IFNB1, and
IFNL1 did not increase in infected
samples or in samples with a higher
virus signal (Fig 3e-f).

We next specifically analysed the
spatial distribution of a single cytokine
gene, CXCL9, which showed the
greatest difference between samples
with low and high viral signal (Fig 3e)
and infected and uninfected samples
(Fig 3f) in both Visium and GeoMx
data, respectively. CXCL9 is an
IFN-γ-induced ligand of CXCR3
expressed by macrophages (24) which
has been shown to be upregulated
during COVID-19 infection in humans
and mice (25), a finding consistent with
our results. GeoMx and Visium data
both indicate that CXCL9 expression is
highest in high-viral mRNA signal
patient sample LN3 (Fig 3c-d).

At the protein modality, the CODEX
data was tested for statistically
significant differences in protein
expression between COVID-19
infected and uninfected patients. We
found higher expression of CD45,
CD163 (monocyte/macrophage
marker), and CD107a (cytotoxic CD8 T
cell marker) in COVID-19 samples
compared to uninfected ones (Fig S7),
an observation consistent with the
results from the GeoMx RNA data.
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Figure 4. Cell type predictions in a COVID-19 infected sample (LN2 patient) by using
both Visium and Phenoimager HT data.
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a) Results of clustering on integrated data (clustering resolution of 0.6), showing patient
sample LN2 only.
b) Heatmap indicating the average label transfer score of each cell type in each predicted
cell cluster. Values are scaled by column (cell type).
c) Label transfer scores for key cell types shown in B plotted to the tissue.
d) Spatial expression of macrophage markers in COVID-19 infected and normal lung tissue
consistently shows a much stronger presence of macrophages in the COVID-19 infected
samples.

Discussion

The global COVID-19 pandemic has
proven the essential roles of genomics
and advanced multi-omics analyses as
public health tools and discovery
platforms for RNA vaccines, immune
responses, and pathogenic
mechanisms of infection (5, 6). A key
feature of COVID-19 infection is the
diverse molecular and cellular
mechanisms underlying its highly
heterogeneous initiation, severity and
progression between patients. A
comprehensive and multi-dimensional
view of human cells responding to
virus infection and spread in the lung is
needed to increase readiness for
future pandemics and to better
understand the effects of Long COVID

(12, 26). Multi-omics analysis, making
use of interactome, proteome, and
transcriptome data, has shown the
potential to advance our understanding
and help identify candidate drug
targets against COVID-19 (27). One
key area where we need to glean more
information is the spatial
characteristics of the lung tissues as
the major site for virus localisation, as
it is still unclear whether peripheral
blood or nasal swab samples
accurately reflect viral loads and
effects within the lung tissue itself.
Here we present an in-depth spatial
multi-omics analysis of
COVID-19-infected lung tissues,
reconstructing a spatial map of
immune responses to COVID-19
infection across lung biopsies from
multiple patients.

Method development to integrate
spatial multi-omics data remains at an
early stage of development (26). Here,
we developed an automated
computational approach to map spatial
data to cross-validate multimodal
information about spatial gene/protein
expression, cell/neighbourhood
distribution and anatomical annotation
on an H&E image. This approach uses
an image registration method to

transfer labels (i.e. annotations and/or
expression information) from adjacent
or nearby tissue sections to the same
common coordinate for the integrative
analysis (28). For tissue sections in the
same block, but are further away, the
integration is more challenging and
less accurate, but the tissue landmarks
are still mappable. We here
successfully mapped CODEX protein
signals to Visium RNA data. This
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integration confirmed cell types
predicted from spatial transcriptomics
data, as shown by the high correlation
of CODEX protein signals and Visium
RNA signals in airway epithelial cells
and smooth muscle cells. We believe
that this integration method is also a
powerful tool for other projects,
because it allows for the flexible
integration of multiple data modalities
measured from separate sections into
a single common framework for
downstream analysis.

By using Visium data and GeoMx data
at bulk/pseudo-bulk levels, we
identified suites of genes (n = 2,132
genes for Visium and n = 241 genes
for GeoMx) associated with high- or
low-virus mRNA samples. The list of
genes upregulated in high-virus
samples was enriched for
immune-related functions including
interferon response, chemokine
signalling and antigen presentation.
We validated our result in a replicate of
an additional sample from a separate
Visium data cohort. These samples
showed a strong transcriptional
signature for genes associated with
low viral samples, which is consistent
with their SARS-CoV-2 spike mRNA
expression levels as determined by
RNAScope. This suggests that we
have identified a potential
transcriptional signature that allows
sample viral mRNA signal to be
inferred without directly detecting the
virus.

Using orthogonal Visium, CODEX and
GeoMx data, we consistently found the
presence of macrophages in
COVID-19-infected samples,

particularly those with a high viral
mRNA signal. We also detected a wide
range of cytokines likely to have been
produced by these macrophages as
part of the inflammatory responses to
COVID-19 infection; again, cytokine
expression was enriched in COVID-19
infected samples, more so in the
samples with high viral signal.
Independent datasets from GeoMx,
CODEX and PhenoImager HT
exhibited a shared patterns of
increased NK cells and T cells in
COVID-19 samples compared to
uninfected samples.

Interestingly, our community analysis
suggested the colocalisation of
macrophages with CD8 T cells, B
cells, NK cells and plasma cells. This
spatial distribution pattern is consistent
with a report studying bronchoalveolar
lavage fluid, which showed that a rich
presence of T cells and monocytes
induced cytokine release from
macrophages (29). Macrophages are
known to contribute to cytokine storm
(30). From our spatial mapping of
macrophages within their immune
environment, we suggest potential
spatial signatures in immune
responses by the host lung tissues to
COVID-19 virus infection, and that this
molecular signature may correlate with
tissue damage and cytokine storm
events.

Overall, we have developed a platform
for integrative analysis of spatial
multi-omics data to study the
molecular and cellular mechanisms of
COVID-19 infection processes at sites
of infection. We expect that this
platform and similar approaches will
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contribute to enhancing readiness for
future global infection pandemics,
allowing comprehensive and timely
understanding of pathogenic factors
and host responses.

Methods
Ethical approval and collection of
COVID-19-infected lung sample

Autopsy and biopsy materials were
obtained from the Pontificia
Universidade Catolica do Parana
National Commission for Research
Ethics under the following ethics
approval numbers: protocol number
3.944.734/2020 (for the COVID-19
group), and 2.550.445/2018 (for the
control groups). The control groups did
not have

COVID-19 infections, but did exhibit
non-viral comorbidities. All methods
were carried out following relevant
guidelines and regulations. Families
permitted the post-mortem biopsy of
COVID-19 samples and conventional
autopsy for the cases in the control
group. The study was approved under
the University of Queensland Human
Research Ethics Committee
ratification.

Multispectral multiplex IHC
[PhenoImager HT]
A multispectral MOTIF panel was
developed (Akoya Biosciences, US)
and staining was performed on a Leica
Bond RX (Leica biosystems, US) at
the Walter and Eliza Hall Institute
(WEHI) histology core (Melbourne,
Australia). Briefly, antibodies were
validated and antigen retrieval
conditions optimised by DAB staining
of Tonsil and Lung tissue, prior to
testing in a multiplex panel. Antibodies
were then tested for stable staining
patterns in several panel orders. The
final inal panel was 1: IFI27, abcam
#ab224133, 1:30, Opal 520; 2: CD15,
Biolegend #301902, 1:200, Opal 570;
3: CD66b, Biolegend #305102, 1:200,
Opal 620; 4: CD8, CST #70306, 1:200,

Opal 690; 5: CD56, CST #99746, 1:50;
Opal 480; 6: CD3, Dako #A0452,
1:500, TSA-Dig-780. Whole slide
scans were performed on Vectra
PhenoImager HT (Akoya Biosciences,
US) by WEHI histology core, and
images were spectrally unmixed in
InForm (Akoya Biosciences, US) using
MOTIF spectral libraries.

CODEX dataset generation and
pre-processing
CODEX (Akoya Biosciences, US)
staining was performed by Enable
Medicine, US, as described previously
(15). Briefly, FFPE tissue samples
were mounted on 20x20mm
poly-lysine treated coverslips. After
antigen retrieval, 190uL of antibody
solution was added to the coverslips,
which were incubated for 3hrs at RT in
a humidity chamber. This was followed
by several cycles of washing and
fixation steps prior to cyclical
visualisation. Antibody targets included
aSMA, CD107a, CD117, CD11b,
CD11c, CD14, CD141, CD15, CD163,
CD183, CD197, CD20, CD21, CD31,
CD34, CD38, CD3e, CD4, CD45,
CD45RA, CD45RO, CD56, CD68,
CD8, FoxP3, GATA3, GranzymeB,
HLA-DR, Ki67, PanCK, PGP9.5,
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Podoplanin, RORgammaT, Siglec8,
and Vimentin. For a more detailed
protocol, see the reference (31).

Coverslips were imaged on an inverted
fluorescence microscope (Keyence
BX-810) using a Plan Apo 20x 0.75 NA
objective (Nikon). The Codex imaging
cycles were performed using a Codex
Instrument (Akoya Biosciences) to
image each barcoded antibody with
corresponding barcoded fluorophore.
Large regions were broken up into tiled
subregions, and five z-stack slices
were imaged with a step size of 1.5
μm.

Images were deconvolved and
pre-processed using an image
pre-processing pipeline (Enable
Medicine, US). Briefly, background
signal was removed from the image by
using a computationally aligned blank
acquisition cycle as a reference
channel. Then, image deconvolution
was performed for each biomarker
image z-stack, and the best focus was
chosen using an extended depth of
field algorithm. Finally, the individual
tiles were aligned and stitched
together, and all channels were
stacked. Image analysis was
performed by Enable Medicine (US).
Nuclear cell segmentation was
performed using DeepCell, followed by
segmentation dilation (32). Cellular
protein expression levels were
computed from the mean fluorophore
intensity for each biomarker, and .fcs
data were exported for downstream
analysis.

The raw protein expression intensity
matrices were first filtered by quantile.

Cells with total counts lower than 0.05
quantile or higher than 0.95 quantile
were discarded to remove the outliers.
Filtered expression matrices were
subtracted by Blank and Empty
channels then log-transformed.
Cytoskeletal Vimentin and neuronal
PGP9.5 were also discarded from
further analysis.

CODEX dataset cell type
identification

Cell type identification was performed
using the Python package Scanpy
(33). PCA analysis was firstly applied
to pre-processed CODEX datasets.
Top 15 PCs were then used to
calculate the neighbouring graph
(n_neighbour=5). Finally, the
graph-based clustering method
Louvain was performed to reveal the
cell types.

Pseudo-bulk DE analysis for
CODEX data to compare
COVID-19-infected vs uninfected
samples

Four COVID-19 samples were
selected to perform differentially
expressed (DE) analysis against six
non-COVID-19 samples. The single
cell level pre-processed protein
expression was first aggregated by
tissue samples using
aggregateAcrossCells() function in
Scater (34) package and then
normalised by library size, using
sample-specific normalisation factors
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calculated by the function
calcNormFactors() in edgeR package
(35). Each tissue sample was treated
as pseudo-bulk data to fit in a
gene-wise linear model glmQLFit(),
which estimates quasi-likelihood
dispersions between species and
samples. We then implemented
empirical Bayes quasi-likelihood
F-tests from glmQLFTest() function to
identify the DE genes (FDR < 0.05,
log2-fold change > 1 or log2-fold
change < -1). The DE genes were
visualised in heatmaps by using
pheatmap package and in volcano
plots by using EnhancedVolcano
package
(https://github.com/kevinblighe/Enhanc
edVolcano).

Visium data processing and
analysis methods

Visium spatial transcriptomics data
was gathered from a total of 2,615
capture spots across the four patient
biopsies, with the median number of
reads per spot ranging from 393 (LN4)
to 5103 (LN2) (Fig S1b). Raw
sequencing reads were processed and
mapped to against the Homo sapiens
genome GRCh38-2020A (CellRanger
v1.2.2, 10x Genomics); the resulting
filtered count matrices were used for
downstream analyses. Preliminary
data processing was performed to
remove spots with fewer than 100
reads or genes, or with a mitochondrial
or ribosomal read count >50%.
Individual tissue samples were
demultiplexed from their original tissue
array and re-integrated using

canonical correlation analysis (CCA)
based on the top 2000 variable genes
(18). Data normalisation was
performed using scran v1.14.6 (36)
and data scaling, dimensionality
reduction (based on the top 15
principal components), clustering and
sub-clustering, data integration, and
marker prediction were performed in
Seurat v4.0.0 (37)(18, 37). Clustering
was tested using a range of resolution
values from 0 to 1.2 and the highest
average stable resolution value was
selected for each sample using the
SC3 measure from Clustree (38).
Unbiased clustering of spots resulted
in the identification of nine clusters,
five of which were present (i.e. nspots ≥
5) in all tissues and two of which were
tissue-specific (cluster 6 in LN3 and
cluster 8 in LN2). Clusters 4 and 7
recapitulate clear anatomical regions
in sample LN2, representing smooth
muscle and airway epithelial cells,
respectively (Fig S3a). Label transfer
was used to annotate spots with their
major cell type representative, using
the intermediate-level annotation from
Melms et al.’s scRNASeq COVID-19
atlas (19) (Fig S3b). This analysis
predicted the presence of epithelial
cells (airway epithelial cells, alveolar
epithelial type I and type II cells (AT1
and AT2)), immune cells (CD4+ T
cells, cycling NK/T cells,
macrophages, plasma cells), smooth
muscle, fibroblasts, endothelial cells,
neuronal cells. The four dominant cell
types were fibroblasts (nspots = 796),
plasma cells (nspots = 469), alveolar
type II cells (nspots = 796), and airway
epithelial cells (nspots = 420).
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As each Visium spot is composed of
multiple cells (approximately 1 - 9 cells
per spot), we visualised the label
transfer scores for each individual cell
type in turn (Fig S4). We observed that
macrophages were more prevalent in
the virus-high samples. Fibroblasts
were abundant in high-virus patient
LN3 but also in low-virus patient LN2.
plasma cells and airway epithelial cells
were particularly prevalent in low-virus
patient LN2. However, it should be
noted that the tissue section for patient
LN2 captured more morphological
features than the other patients (i.e.
the airway and a portion of smooth
muscle), so the abundance of
particular cell types in this sample may
be driven more by the structural
features within the section, than
differences in COVID-19 response in
this tissue. The other tissues (LN1,
LN3 and LN4) were more homogenous
within a section, and more similar to
one another).

The four patient samples were split
into high and low viral levels based on
previous work from our group (15, 39).
We sought to compare the expression
of genes between the two high
virus-level and the two low virus-level
samples. We identified a total of 115
genes that were upregulated in the
high-viral samples, and 2017 genes
that were upregulated in the low-viral
sample. As expected, visualisation of
the expression of all genes together, in
the form of an AUC score, indicated
highest expression of the high-viral
genes in LN1 and LN3 and high
expression of the low-viral genes in
sample LN2 (Fig S4c-d); gene
expression was comparatively lower in

sample LN4 (Fig S3c-d). The
high-virus genes are enriched for GO
terms including interferon response,
antigen processing and
chemokine-mediated signalling (Fig
S4f). In line with the interferon-related
role of the upregulated DEGs in the
virus-high gene set, 12 of the DEGs
are known interferon-related genes (B.
Tang, personal communication,
01/08/2021) and these show a clear,
qualitative enrichment pattern in LN1
and, in particular, LN3 (Fig S4e).
Differentially expressed genes (DEGs)
between virus-high and virus-low
samples were identified using a
negative binomial test as implemented
in Seurat v4.0.0 (40, 41); GO analysis
was performed using clusterProfiler
(40) against the org.Hs.eg.db
database and a background universe
of all expressed genes in the dataset.
Resulting DEGs were further filtered
by overlapping with genes linked to
KEGG pathways hsa05171
(“Coronavirus disease - COVID-19 -
Homo sapiens (human)”), hsa04060
(“Cytokine-cytokine receptor
interaction - Homo sapiens (human)”),
or a curated list of known
interferon-related genes (15, 22, 23).
Lists of multiple genes were
summarised for visualisation by
calculating an AUC score (42). Cell
type location and proportion per
Visium spot was predicted by using
label transfer (18, 42) on individual (i.e.
unintegrated) samples, based on
intermediate cell type annotations from
a publicly-available reference dataset
(19).

Image registration analysis of
CODEX and Visium data
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The Python package SimpleITK (43)
was used to perform image
registration. CODEX images were
firstly downscaled to appropriate
resolution to match with the resolution
of the corresponding Visium
histological image. The DAPI channel
in the CODEX image was cropped and
rotated to have the same capture area
and orientation with the Visium
histological image and was used as
the moving image (query image).
Visium histological images were
converted to grayscale images to
transform the pixel data dimension
consistent with the CODEX DAPI
channel image and was used as the
fixed image (target/reference image).
After centralising the two images, the
rigid affine transformation was applied
for shearing, shifting and scaling the
moving image to align with the fixed
image in lower resolution as the initial
step. Finally, the non-rigid B-spline
transformation was applied on affine
initialisation to refine the local
alignment. The mutual information was
used as the evaluation matrix to
optimise the parameter for both affine
and b-spline transformation.

Integrating CODEX protein signal to
Visium transcriptional data

After registering the CODEX image to
Visium histological image, the
optimised transformation matrix was
then able to convert the cells in
CODEX data from the original CODEX
spatial coordinates (x, y) to newly
mapped spatial coordinates (x’, y’)
which are identical to Visium spatial

coordinates. With this shared
coordinating system, cells in CODEX
data then can be searched and
grouped by the spatial radius
(d=55um, diameter equivalent to
Visium spots size) using the
transferred spatial coordinates (x’,y’),
which created an additional layer of
protein expression profiles on top of
existing Visium RNA measurements
with compatible resolution (Visium spot
level). Cell type wise contingency
tables were created from binarised
CODEX protein marker expression
and Visium label transferring results.
Chi-squared test was implemented to
test the consistency.

GeoMX data Pre-processing

GeoMX data consists of 49 ROIs in
total, 21 belonging to uninfected
samples across five patients
(N06_062, N06_095, N07_009,
N07_034, N08_021) and 28 belonging
to COVID-19 infected samples across
four patients (LN1, LN2, LN3, LN4).
For each ROI, the tissue type
annotations (Vessel, T2, Bronchi
Epithelium, and Immune) are also
available for GeoMX data. GeoMX
data has a total of 18704 genes. For
the differential gene expression, the
3rd quartile normalised counts
provided were further normalised using
the edgeR package, which performs
library size normalisation. The design
matrix included group-level (COVID-19
infected and uninfected) as well as
patient-level (9 different patients,
4-COVID-19 and 5-uninfected)
information for differential gene
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expression analysis of all COVID-19
infected vs uninfected samples, for
adjusting the differences between nine
patients. Whereas for the differential
gene expression analysis between
high-viral vs low-viral mRNA signal
(Fig S2d) and COVID-19 infected vs
uninfected samples for specific tissue
type (Vessel, T2 and Bronchi
Epithelium) the design matrix just
included the group-level information.

GeoMX spatial deconvolution

We used the R package SpatialDecon
(44) to assess the abundance of
various cell types for all the ROIs.
SpatialDecon (44) can estimate cell
type abundance for spatially-resolved
gene expression studies. The input
data required are: reference
expression profiles of expected cell
types, normalised gene expression
matrix and expected background
counts of the normalised gene
expression at each element calculated
by function
derive_GeoMx_background).
Reference expression profile used
here is “SafeTME” (this reference
matrix is designed to be biassed
towards immune cell types and
includes expression of 906 genes to
define 18 cell types; some of the
known cancer genes are avoided in
this profile) we used this reference to
identify proportions of different immune
cell types across COVID-19 infected
and noninfected samples. The overall
cell type proportion for all samples is
shown in (Fig S1i) and the cell types

with significant difference in mean are
shown in (Fig S1g).

PhenoImager HT cell type and cell
community analysis

From the multiplex tissue image, the
DAPI channel stained for cell nuclei
was used for cell segmentation. By
adopting a deep learning model called
stardist (45) every nuclei from the
DAPI channel was transformed into a
polygonal cell object. For each cell,
mean protein intensity signal was
measured and assigned into the cell
protein expression level. After several
signal preprocessing steps to
normalise and remove outlier signal, a
standard cell type clustering was
applied using a common single-cell
processing pipeline, scanpy (33, 45).
Based on the panel of six proteins, we
were able to identify key immune cell
types including NK cells (CD56+),
Monocyte/Myeloid (CD15+), naive T
cells (CD3+ and CD8+), cytotoxic
T-cells (CD8+) and neutrophil
(CD66b+) as shown in Fig S1f. Among
all the clusters detected by the scanpy
pipeline (Leiden clustering), those cells
with very low expression of all the
proteins in the panel were classified as
unidentified and removed from
downstream analysis.

After identifying cell type, we sought to
shed light into the distribution of the
cell spatial organisations through cell
community analysis. For cell
community detection, cells are
grouped into different clusters of

22

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2023. ; https://doi.org/10.1101/2023.02.19.529128doi: bioRxiv preprint 

https://paperpile.com/c/lcPdZ4/VV6y
https://paperpile.com/c/lcPdZ4/VV6y
https://paperpile.com/c/lcPdZ4/H1th
https://paperpile.com/c/lcPdZ4/H1th+4Adx
https://doi.org/10.1101/2023.02.19.529128


communities using its spatial
attributes, which are defined by a K
number of nearest neighbouring cells.
Clustering of cells with similar spatial

neighbourhood patterns (i.e. spatial
identity) allows us to identify the
composition of cell type for each
community.

23

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2023. ; https://doi.org/10.1101/2023.02.19.529128doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.19.529128


Data availability

All of the spatial transcriptomics
(Visium and GeoMX WTA), both raw
and processed count matrices, will be
deposited to ArrayExpress repository
(https://www.ebi.ac.uk/arrayexpress/)
and raw sequencing data will be
available according to human ethics
regulations. All other experimental
data, including RNAScope, CODEX,
PhenoImager HT (imaging data and
count data) will be made available in
Zenodo.

Code availability

The code to reproduce analyses and
figures presented in this paper is
available at
https://github.com/BiomedicalMachine
Learning/Covid_spatial_multi-omics
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