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Abstract

The composition and activation status of the cellular milieu contained within the

tumour microenvironment (TME) is becoming increasingly recognized as a driv-

ing factor for immunotherapy response. Here, we employed multiplex immuno-

histochemistry (mIHC), and digital spatial profiling (DSP) to capture the targeted

immune proteome and transcriptome of tumour and TME compartments from an

immune checkpoint inhibitor (ICI)-treated (n = 41) non-small cell lung cancer

(NSCLC) patient cohort. We demonstrate by mIHC that the interaction of CD68+

macrophages with PD1+, FoxP3+ cells is enriched in ICI refractory tumours

(p = 0.012). Patients responsive to ICI therapy expressed higher levels of IL2

receptor alpha (CD25, p = 0.028) within their tumour compartments, which cor-

responded with increased IL2 mRNA (p = 0.001) within their stroma. In addition,

stromal IL2 mRNA levels positively correlated with the expression of

pro-apoptotic markers cleaved caspase 9 (p = 2e�5) and BAD (p = 5.5e�4) and

negatively with levels of memory marker, CD45RO (p = 7e�4). Immuno-

inhibitory markers CTLA-4 (p = 0.021) and IDO-1 (p = 0.023) were suppressed in

ICI-responsive patients. Tumour expression of CD44 was depleted in the respon-

sive patients (p = 0.02), while higher stromal expression of one of its ligands,

SPP1 (p = 0.008), was observed. Cox survival analysis also indicated tumour

CD44 expression was associated with poorer prognosis (hazard ratio [HR] = 1.61,
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p = 0.01), consistent with its depletion in ICI-responsive patients. Through

multi-modal approaches, we have dissected the characteristics of NSCLC immu-

notherapy treatment groups and provide evidence for the role of several markers

including IL2, CD25, CD44 and SPP1 in the efficacy of current generations of ICI

therapy.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related mor-
tality in men and second cause of cancer mortality in
women, with 5-year overall survival (OS) rates between
10% and 20% [1]. Of these cases, long-term benefits to
PD-1/PD-L1 immune checkpoint inhibitors (ICIs) are
observed in less than 30%. Thus, there is currently an
unmet clinical need for predictive biomarkers for ICI
therapy to better stratify patients for treatment [2–4].
Both tumour cell expression of PD-L1 [5] and tumour
mutation burden (TMB) [6, 7] are FDA-approved com-
panion diagnostic biomarker tests used to stratify patients
for immunotherapy; however, these appear to be inde-
pendent variables in their predictive capacity [6, 8, 9].
Difficulties in the implementation and assessment of
these assays suggest that much remains to be discovered
to understand the biological cues that dictate ICI
response.

Therapy response and tumour progression are gov-
erned by tumour intrinsic features and their inherit
interaction with the cellular composition of the
tumour microenvironment (TME) [10]. Such interac-
tions activate or suppress inflammatory signalling and
immune cell recruitment, disrupt antigen presenta-
tion, remodel the extracellular matrix (ECM), modify
nutrient and oxygen supply and clearance, and overall
disrupt the homeostasis that would otherwise allow
tumours to be targeted by the host immune system [4].
Of the milieu of cell subsets within a patient’s TME,
very little is understood of their interaction and how
these associations may influence the outcome to
immunotherapy.

While the field of immunology has benefited from
flow cytometry to delineate the roles of cellular hierar-
chies found in peripheral blood, similarly high-plex
methods to analyse both composition and spatial organi-
zation of cells in tissue have been lacking. As such, infor-
mation garnered thus far has been limited to targeted
multiplex immunohistochemistry (mIHC) panels to eval-
uate the prognostic and predictive value of small num-
bers of cell markers in parallel including CD3+, CD4+,

CD8+, FoxP3+, PD-1+, CD68+ and PD-L1+ [11–14].
Interestingly, PD-L1 expression within the immune cell
compartment is being increasingly reported and provides
confounding evidence to the PD-1/PD-L1 paradigm of
tumour-centric immune evasion [15–18].

Advances in multiplexed techniques to measure the
composition of tumour and the TME have begun to
unravel the cellular phenotypes that associate with ther-
apy response. Here, we adopted a discovery approach to
examine the cellular composition of lung cancer patient
samples using spatial proteomic and transcriptomic
methodologies to evaluate tumour and TME compart-
ments independently, with additional single-cell level
mIHC. A second line, retrospective ICI immunotherapy
cohort (IO) was examined by targeted 1800 mRNA and
68 protein digital spatial profiler (DSP) assays, as well as
6-plex mIHC. We sought to use unbiased statistical
approaches to inform upon on outcome to therapy, and
to assess if these outcome associations were specific for
treatment.

MATERIALS AND METHODS

This study has Queensland University of Technology
Human Research Ethics Approval (#2000000494). Pre-
treatment NSCLC tissue microarrays (TMAs) were
constructed by TriStar Technology Group (USA) from
retrospective cohorts in conjunction with their clinical
collaborators. TMAs consisted of single 1 mm cores per
tumour sample from patients who received second-line
ICI immunotherapy (IO cohort) treatments. Patholo-
gists reviewed whole sections prior to coring represen-
tative tumour regions for this assay. Serial sections of
the IO cohort were analysed by Nanostring GeoMX
DSP protein and mRNA panels (Cancer Transcriptome
assay [CTA] Atlas panel), and by mIHC. Clinical end-
points included ICI response and OS according to
RECIST 1.1 criteria. All patient clinicopathological,
treatment, ICI response and survival parameters were
recorded and provided by TriStar Technology Group
and their medical teams.
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Nanostring GeoMX Digital Spatial
Profiler (DSP)

NSCLC TMA slides were stained and analysed by Nano-
string GeoMx DSP system at the Systems Biology and
Data Science Group at Griffith University (Gold Coast,
Australia). Morphology/visualization markers consisted
of CD3, CD68 and pan-cytokeratin. mRNA panel con-
sisted of 1812 curated genes from the human CTA
including housekeeping and negative control probes.
Slides were processed and hybridized according to the
manufacturer’s instructions. Region of Interest (ROI)
selection on each TMA core was performed such that
660 μm circles were segmented into cytokeratin+

(tumour) and cytokeratin� (stroma) regions by thresh-
olding on cytokeratin staining intensity. Barcodes from
these regions were collected to generate measurements
per compartment. Barcodes were sequenced, mapped
and counted by next-generation sequencing (NGS) read-
out as per manufacturer’s instructions. Quality control
(QC) was performed within the GeoMx DSP analysis
suite to remove outlying probes and collapse counts
from 5 probes per gene to single measurements. These
QC data were output for downstream bioinformatic
analysis.

The protein panel consisted of 68 antibodies including
core panels across human immune cell profiling, IO drug
target, immune activation, immune cell typing, pan-
tumour, cell death and PI3K/AKT panels. Slides were
processed as per manufacturer’s instructions
and tumour/stroma regions demarcated as above. Anti-
body barcodes were counted on Ncounter platform as
per manufacturer’s instructions and External RNA
Controls Consortium (ERCC) QC performed in the
GeoMx DSP analysis suite prior to outputting data for
bioinformatic analysis.

Multispectral mIHC

Slides were stained using pre-validated MOTIF lung can-
cer PD-1/PD-L1 panel (Akoya Biosciences, USA) accord-
ing to the automated mIHC staining instructions
provided by the manufacturer for the Leica Bond RX
(Leica Biosystems, USA) at the Walter and Eliza Hall
Institute (WEHI) histology core (Melbourne, Australia)
(https://www.akoyabio.com/phenoimager/assays/motif-
pd-1-pd-l1-panel-auto-luca-kit). Antibodies were pro-
vided at ready-to-use (RTU) concentrations and staining
was performed in the order below with corresponding
Opal dye pairing: FoxP3 (D608R)—Opal 570, PD-L1
(E1L3N)—Opal 520, PanCk (AE1/AE3)—Opal 690, PD-1
(EPR4877)—Opal 620, CD8 (4B11)—Opal 480, CD68 (PG-
M1)—TSA DIG, Opal 780. Staining was tested on tonsil

tissue for appropriate staining pattern prior to applica-
tion on NSCLC tissue. Whole slide scans were per-
formed on Vectra Polaris (Akoya Biosciences, US) by
WEHI histology core, and images were spectrally
unmixed in InForm (Akoya Biosciences, US) using
MOTIF spectral libraries.

Image analysis

Image analysis and cell classification were performed in
collaboration with Enable Medicine (USA). Nuclear cell
segmentation was performed using DeepCell, followed by
segmentation dilation [19, 20]. Cellular protein expres-
sion levels were computed from the mean Opal fluoro-
phore intensity for each biomarker. Cell classification
was performed by manually gating on fluorescence inten-
sity to define positive cells in scatter plots of each channel
relative to a control channel. Cells were then assigned to
classes according to the rules-based phenotyping protocol
supplied by the manufacturer: CD68+, (CD68+, PD1+),
(CD68+, PD-L1+), CD8+, (CD8+, PD1+), (CD8+, FoxP3+),
(CD8+, PD1+, FoxP3+), (FoxP3+, PD1+), PanCk+,
(PanCk+, PD-L1+). A minimum threshold of 3000 cells
was set for cores to include in mIHC spatial analysis. Cell
frequency was defined by counting the instances of each
cell class and normalizing to the total cell count for each
core. Cell interactions were defined by shared edges of the
Voronoi tessellation generated from the cell centres [21,
22]. Cell interaction frequencies were calculated by count-
ing the instances of an interaction and normalizing to the
total number of interactions in the core. Neighbourhoods
were defined using the k-nearest neighbour algorithm
(KNN). For each cell, the cell types of the 10 nearest
neighbours were assigned as the features of that cell.
These features were then run through an unsupervised
KNN algorithm and assigned to 10 clusters. The choice of
10 nearest neighbours and 10 clusters was chosen heuristi-
cally as parameters that worked well for a wide variety of
datasets [21, 22]. For cross-sample comparisons, the fre-
quency of each cell type/interaction/neighbourhood was
normalized against the highest frequency among the cores
analysed. The cross-sample comparisons were used to gen-
erate dendrograms of cell frequencies/interactions/neigh-
bourhood. T-tests were performed between response status
groups for each of these metrics. These metrics were also
assessed for OS associations by Cox proportional hazards
models as continuous variables.

CD44 CO-detection by indexing staining

CO-detection by indexing (CODEX) (Akoya Biosciences,
USA) staining including CD44 and PanCk was performed
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by Enable Medicine, USA, as described. CD44 staining
was performed using a commercially available oligo-
conjugated antibody (CD44-BX005 (IM7) Akoya Biosci-
ences) as per manufacturer’s instructions. Briefly,
formalin-fixed, paraffin-embedded (FFPE) tissue samples
were mounted on 20 mm � 20 mm poly-lysine treated
coverslips. The CD44 antibody was diluted 1:200 in a
staining buffer. After antigen retrieval, 190 μL of anti-
body solution was added to the coverslips, which were
incubated for 3 h at RT in a humidity chamber. This was
followed by several cycles of washing and fixation steps.
For a more detailed protocol, see Reference [23].

Coverslips were imaged on an inverted fluorescence
microscope (Keyence BX-810) using a Plan Apo 20� 0.75
NA objective (Nikon). The CODEX imaging cycles were
performed using a Codex Instrument (Akoya Biosci-
ences). The RX-005 Atto-550 reporter (Akoya Biosci-
ences) was used to tag the CD44 antibody. Large regions
were broken up into tiled subregions, and 5 z-stack slices
with a step size of 1.5 μm.

Images were deconvolved and pre-processed using
image pre-processing pipeline (Enable Medicine, USA).
Briefly, background signal was removed from the
image by using a computationally aligned blank acqui-
sition cycle as a reference channel. Then, image decon-
volution was performed for each biomarker image z-
stack, and the best focus was chosen using an extended
depth of field algorithm. Finally, the individual tiles
were aligned and stitched together, and all channels
were stacked. CD44 mean fluorescence intensity was
calculated within PanCK+ mask area and expressed as
the geometric mean of pixel intensities normalized to
the mask area in μm2.

Data analysis

Transcriptomic and proteomic data qualities were evalu-
ated by principal component analysis (PCA) and coeffi-
cients of variation (CV) assessed to determine the
suitability of the RUV-III normalization method [24, 25].
Differential expression (DE) analysis was performed
within DeSeq2 and Limma packages [26, 27]. Benjamini–
Hochberg correction for multiple comparisons was used
to adjust p-values for differential analysis and Cox pro-
portional hazards analyses and are shown in supplemen-
tary data. Significant exploratory statistics shown in
results are not adjusted for multiple comparisons as a
result of our cohort sample size. The most predictive or
discriminative signatures classifying ICI response were
developed using sparse partial least squares-discriminant
analysis (sPLS-DA) [28]. The performance of the sPLS-
DA was assessed using 10-fold leave-one-out cross-

validation and misclassification error was investigated
using balanced error rate (BER) and area under receiver
operator characteristic (ROC) curves. Only highly stable
features (>0.8) were included, and the final sPLS-DA
model was limited to one variable per 2 samples. Cox
proportional hazards survival analysis using continuous
variables and not cut-point method was conducted within
R studio [29] using the Survival package [30] and plots
generated by ggplot2 [31]. Ingenuity Pathway Analysis
(IPA®) was used to evaluate upstream regulators of
differentially expressed transcripts (QIAGEN Inc.,
https://www.qiagenbioinformatics.com/products/ingenui
typathway-analysis).

RESULTS

Patient cohorts

The patient cohort consisted of n = 41 advanced stage
III–IV NSCLC patients who received ICI therapy in the
second-line setting (Table 1), of which 39% were classi-
fied as responsive (R), while 61% were non-responsive
(NR) according to RECIST 1.1 criteria. Anti-PD-1 thera-
pies Nivolumab and Pembrolizumab comprised 94% of
treatments, with one patient receiving anti-PD-L1 agent
Durvalumab. Ninety-four percent and 32% of patients
remained alive at follow-up time, for responsive, and NR
groups, respectively. The cohort contained both squa-
mous and adenocarcinoma NSCLC histology.

TABL E 1 Immunotherapy cohort (IO) cohort characteristics.

IO cohort
Non-responder,
N = 25

Responder,
N = 16

Gender

Female 9 (36%) 5 (31%)

Male 16 (64%) 11 (69%)

Agea 66 (59, 69)a 58 (58, 63)a

ICI treatment

Durvalumab 0 (0%) 1 (6.2%)

Nivolumab 22 (88%) 11 (69%)

Pembrolizumab 3 (12%) 4 (25%)

Current status

Alive 8 (32%) 15 (94%)

Deceased 17 (68%) 1 (6.2%)

Histology

Adenocarcinoma 12 (48%) 13 (81%)

Squamous cell carcinoma 13 (52%) 3 (19%)

aBrackets for age show the range.
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Multiplex IHC spatial analysis

The current PD-L1 IHC companion diagnostic for PD-1/
L1 axis ICI therapy remains limited, both in its clinical
assessment and biological meaning [32]. Here, were uti-
lized an optimized multispectral, mIHC assay [33] to
evaluate the frequency and spatial associations of ICI tar-
gets PD-1/PD-L1, cytotoxic T cells (CD8), T-regs (FoxP3),
and macrophages (CD68) (Figure 1a,d). Normalized cel-
lular counts were assessed for each marker and their phe-
notypic subsets (e.g., CD8+, FoxP3+) according to the
manufacturers rules-based phenotyping workflow
(Figures 1b,e and S1a,b). Subsequently, pairwise cell:cell
interactions were ranked by the frequency of their shared
Voronoi edges (Figure S1c,d). Cellular populations were
grouped into cellular neighbourhoods by their nearest
neighbour associations as published [22] (Figures 1d,f

and S1e,f). Differential enrichment of each of these fea-
tures was tested in ICI response groups (Figure 1g). Nei-
ther tumour nor immune cell expression of PD-L1, nor T-
cell expression of PD-1 was enriched in the responding
cohorts, and in fact, the frequency of any phenotype
alone did not associate with response in our data. Signifi-
cantly, however, the interactions between CD68+ macro-
phages and PD1+, FoxP3+ cells were enriched in ICI
refractory tumours (p = 0.012), while a trend existed for
the interaction between CD8+, PD1+, FoxP3+ exhausted
T cells and PanCk+, PD-L1+ tumour cells in ICI resistant
tumours (p = 0.073) (Figure 1g). KNN analysis
(Figure 1c,f) did not indicate enrichment of cellular
neighbourhoods described by the markers evaluated in
this assay (Figures 1g and S1g). Of note, no features were
observed to be enriched in ICI-responsive tumours in our
cohort. Assessment of these features in IO cohorts by the

(a) (b) (c) (g)

(d) (e) (f)

Neighbourhoods

Neighborhood 0
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Neighborhood 2

Neighborhood 3

Neighborhood 4
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Neighborhood 6

Neighborhood 7

Neighborhood 8

Neighborhood 9

Cell Interactions

Cell Frequency

CD68:PD1,FoxP3

CD8,FoxP3,
PD1:PanCk:PDL1

FoxP3,PD1:PanCK,
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-0·15
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100 µm
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0
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p = 0·012

p
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a
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e
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0
)

p = 0·081

p = 0·073

F I GURE 1 Multispectral spatial analysis revealed the enrichment of cellular interactions in immune checkpoint inhibitor (ICI)

sensitive tumours. Representative analysis of tissue microarrays (TMA) cores from responders (a–c) and non-responders (d,f). A

Representative non-small cell lung cancer (NSCLC) core from the responder. (b) Concordant cell-type Voronoi. (c) Concordant

neighbourhood Voronoi. (d) Representative NSCLC core from non-responder. (e) Concordant cell-type Voronoi. (f) Concordant

neighbourhood Voronoi. (g) Volcano plot indicating enrichment and significance of cell frequency, cell interaction and cellular

neighbourhoods in responding/non-responding NSCLC cohorts.
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Cox proportional hazards model did not indicate signifi-
cant associations with OS.

Digital spatial profiling

While targeted mIHC offers parallel spatial insights into
tumour cellularity, it falls short of the depth required to
tease apart the composition of complex tissues. Digital
spatial profiling was therefore applied to better delineate
the immune proteome and targeted transcriptome of the
IO cohort tissues. Regions within tumour cores were seg-
mented using cytokeratin/ non-cytokeratin immunofluo-
rescent masks to enable transcriptome and proteomic
marker measurement within the tumour and stroma
compartments independently (Figure S2). In this way,
the measurements obtained from tumour regions com-
prised both tumour cells as well as infiltrating host cell
populations. Similarly, stromal regions described the cellu-
lar content of tumour-associated stroma. While most cores
contained both tumour and stroma regions, some punches
lacked sufficient stromal content for the mRNA assay. As
such, of the 41 IO cohort samples, robust transcriptome
data were obtained for 33 tumour ROIs and 23 stroma
ROIs, which were matched for 21 patients, while protein
measurements were complete in both cohorts due to the
nature of antibody-based detection compared to that of
NGS. The data were assessed for appropriate normaliza-
tion to account for differences in assay input due to vary-
ing cellular densities. House-keeping normalization by
assay house-keeping probes was compared to remove
unwanted variation (RUV-III) [25] factor analysis which
has been demonstrated to be more effective for variance
stabilization than traditional normalization methods [34]
(Figure S3). One outlying tumour region of the protein
assay was excluded from the analysis.

Unsupervised dimension reduction was applied to
explore the data’s relationship with sample clinical features,
including IO response, stage at diagnosis and NSCLC histol-
ogy, however, variance across samples was not clearly
attributable to these sample characteristics (Figure S4).

Postulated markers of IO response by DSP

To further test for associations of cellular markers postu-
lated to be involved in IO response, we evaluated thera-
peutic targets PD-1 and PD-L1 [11, 16], tumour cell
antigen presentation (HLA-DR) [35, 36] and cytotoxic T
cells (CD8+) [12] in our data. Comparative analysis by
DSP alongside our mIHC data indicated that these
markers were not significantly associated with ICI

response in protein or mRNA DSP assays, despite a trend
for a higher abundance of PD-1 and CD8 mRNA in
tumour regions of ICI-sensitive patients (Figure S5).

Differential analysis of IO response

With this in mind, we sought to identify markers in our
DSP data which better discriminated ICI response. Differ-
ential analysis was performed between responders
(R) and non-responders for protein markers in tumour
regions (R [n] = 15, NR [n] = 24), stromal regions (R [n]
= 16, NR [n] = 24), as well as mRNA in tumour (R [n]
= 15, NR [n] = 19), and stroma (R [n] = 8, NR [n] = 18)
regions (Figure 2, Table S1).

This analysis indicated that IL-2 receptor alpha
(CD25) was upregulated (p = 0.028) in tumour regions of
responding patients (Figure 2a), which also corresponded
with higher levels of IL-2 mRNA (p = 0.001) within these
patients’ stroma (Figure 2d), suggesting key conditions
for ICI efficacy. Natural killer cells (CD56) (p = 0.005)
and immuno-inhibitory markers CTLA4 (p = 0.021),
IDO1 (p = 0.023) were lower in responders’ stroma
(Figure 2c), while levels of GITR (p = 0.01), CD4
(p = 0.01), CD56 (p = 0.04), PD-L2 (p = 0.04), CD44
(p = 0.02) and CD24 mRNA (p = 0.0008) were also lower
in their tumour regions (Figure 2a, b). Interestingly, the
expression of CD44 receptor in tumour regions shared an
inverse relationship with the mRNA of one of its stromal
ligands, SPP1 (osteopontin). Significantly more SPP1
mRNA (p = 0.008) was observed in the stroma of
responding patients (Figure 2d), while its tumour cell
receptor, CD44, was relatively depleted in these patients.
Decreased PTEN was associated with response in both
tumour (p = 0.02) and stroma (p = 0.02). Surprisingly,
EPCAM protein (p = 0.01) was highly abundant within
the stroma of responding patients, and its stromal expres-
sion appeared specific as evidenced by a lack of concor-
dant epithelial cell marker, pan-cytokeratin.

IL2 is a key cytokine with pleiotropic results on
immune cell recruitment, activation and survival. To
investigate the cell phenotypes potentially being influ-
enced by IL2 production, correlations between stromal
IL2 mRNA and concordant stromal protein marker data
were evaluated (Figure S6). Interestingly, pro-apoptotic
markers cleaved caspase 9 (R = 0.73, p = 2e�5) and BAD
(R = 0.63, p = 5.5e�4) as well as the IL7 receptor
(CD127) (R = 0.52, p = 7e�3) and IL2 receptor (CD25)
(R = 0.53, p = 5e�3) were positively associated with
levels of IL2 mRNA and thus ICI response, while levels
of memory T cells (CD45RO) (R = �0.62, p = 7e�4) pos-
sessed an inverse association.
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F I GURE 2 Differential expression of protein and mRNA features by immune checkpoint inhibitors (ICI) response. (a) Volcano plot of

DE proteins in tumour. (b) Volcano plot of differential expression (DE) mRNAs in tumour. (c) Volcano plot of DE proteins in stroma.

(d) Volcano plot of DE mRNAs in stroma. Tables indicating most significant DEs shown. Negative value indicates upregulation in

responding patients. Differential expression was performed by immunotherapy cohort (IO) response status within DESeq2 using remove

unwanted variation (RUV) normalized data. Adjusted p-value show Benjamini–Hochberg multiple testing correction.
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Differential CD44 expression is tumour cell
specific

While tumour/stroma compartmentalization has helped
to overcome previous generations of bulk analysis tech-
nologies, it lacks the ability to assign markers to their
parental cell type. We employed multiplex immunofluo-
rescence by CODEX to validate tumour cell CD44 expres-
sion in a serial section of the IO cohort. CD44 expression
was found on tumour cells as well as infiltrating stromal
cells (Figure 3a,b). PanCK masks were used to compart-
mentalize the mIF image and the geometric mean of
fluorescence intensity for CD44 was calculated per
tumour mask area to normalize for cell abundance and
to parallel DSP assay output. Expression of CD44 on posi-
tive tumour cores appeared homogenous across tumour
cells. Comparison between CODEX data (Figure 3c)
shows concordance with CD44 DSP protein data
(Figure 3d) and with a negative association with ICI
response. In addition, a linear correlation between CD44
DSP counts and CD44 mean fluorescence (R = 0.61)
(Figure 3e) exists in support of DSP target discovery.

Survival analysis

Differentially expressed features within the IO cohort
were further examined for their associations with sur-
vival outcomes (Figure 4, Table S2). Enrichment of
tumour CD44 (hazard ratio [HR] = 1.6, p = 0.01) and
stromal CTLA4 (HR = 1.78, p = 0.003) and CD56
(HR = 1.58, p = 0.07) markers in ICI refractory patients
corresponded with poorer OS (Figure 4a). Interestingly,
non-DE proteins including IL2 mRNA correlate, pro-
apoptotic BAD (HR = 0.5, p = 0.01), and MDSC/M2
macrophage ARG1 (HR = 2.37, p = 0.01) markers were
associated with improved and poorer outcome, respec-
tively (Table S2). Twenty-nine of 109 DE tumour tran-
scripts, as well as 4 of 41 DE stromal transcripts,
exhibited survival associations (Table S2). Segregation of
these DE transcripts by their up or down regulation in
ICI-responsive patients indicated an inverse association
(Figure 4b, c). Downregulation of several transcripts cor-
responded with significantly poorer outcomes, including
stromal E-selectin (SELE) (HR = 652, p = 8.8e�4) and T-
cell recruitment chemokine CCL17 (HR = 70, p = 0.006)
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F I GURE 3 Validation of tumour CD44 expression by CO-detection by indexing (CODEX) multiplex immunofluorescence.

(a) Representative CD44 staining (Red) in tumour cells (Green) in non-responder tumour. (b) Representative CD44 staining (Red) in tumour

cells (Green) in responder tumour. (c) Geometric mean fluorescence intensity (mFI) of CD44 by CODEX in responders and non-responders.

(d) Log2 CD44 digital spatial profiler (DSP) counts in responders and non-responders. (e) Correlation between CODEX mFI and DSP counts.

8 MONKMAN ET AL.

 13652567, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/im

m
.13646, W

iley O
nline L

ibrary on [12/04/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Figure 4b). Interestingly, while stromal MTOR expres-
sion was not associated with response, it was highly asso-
ciated with poor outcome (HR = 1065, p = 0.008)
(Table S2). Conversely, enrichment of DE transcripts in
ICI-responsive patients corresponded with significantly
enhanced OS, including stromal PLA2G2A (HR = 0.03,
p = 0.02), and tumour NRP1 (HR = 0.1, p = 0.002), and
NOD1 (HR = 6e�4, p = 0.003) (Figure 4b). Taken
together, these results indicate the association of these
biomarkers with both ICI response and OS outcome
following treatment.

Multivariate modelling of IO response

While the differential analysis was key in resolving dis-
tinguishing features of our data relative to ICI response,
their multivariate integration may yield an improved
diagnostic signature. Multivariate modelling was per-
formed by sparse partial least squares-discriminant analy-
sis (sPLS-DA). PLS-DA offers a feature selection method
to identify the most discriminative factors in a dataset
that are able to classify samples in a supervised frame-
work, that is, samples labelled by ICI response [28].

sPLS-DA performs internal validation by leave-one-out
10-fold cross-validation with lasso penalisation for opti-
mal feature selection, and the number of features was
limited to one per 2 samples. Features within protein
(Figure 5) and mRNA (Figure 6) data were able to effi-
ciently stratify ICI response within tumour and stroma
compartments as demonstrated by patient sample separa-
tion on components 1 and 2 of the sPLS-DA model
(Figures 5 and 6a,b).

Within tumour regions, responding patients could
be characterized by lower levels of CD4, and PTEN
(AUC = 0.84) (Figure 5c) with a secondary signature
comprised of lower levels of fibronectin, CD56, Ki-67,
CD44 and ERα (AUC = 0.95) (Figure 5d). Furthermore,
mRNA of responding tumours were characterized by
higher APLNR (AUC = 0.87) (Figure 6c). A secondary
tumour mRNA signature comprised reduced NKX2-1,
SOX2, KRT6, GLS, PTCH1 and CALM3 (AUC = 1)
(Figure 6d).

Stromal protein markers that indicated IO response com-
prised higher levels of EpCAM and reduced CD56, CTLA4,
IDO1, PTEN, ARG1, GZMA (AUC = 0.9) (Figure 5e), with a
secondary signature composed of increased ER-alpha,
GITR and CD20 (AUC = 0. 94) (Figure 5f).
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Interestingly, IL2 RNA alone solely formed component
1 of the stromal signature (AUC = 0.9) (Figure 6e),
while reduced COL4A6 composed the component 2 sig-
nature (AUC = 0.98) (Figure 6f).

Indications from the sPLS-DA together with results of
the differential analysis provide evidence for the role
of stromal IL2 in the efficacy of PD1/L1 ICI therapy.

In addition, lower levels of natural killer cells (CD56)
and IDO1 in both tumour and stroma were associated
with response. Interestingly, the sPLS-DA model identi-
fied that stromal COL4A6 (collagen type IV) expression
within the ICI-resistant group contributed significantly to
the discriminant signature, indicating their potential
importance in refractory disease.
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F I GURE 5 Multivariate sparse partial least squares-discriminant analysis (sPLS-DA) of protein features that distinguish non-small cell

lung cancer (NSCLC) immunotherapy cohort (IO) response. Patient sample discrimination defined by Components 1 and 2 of sPLS-DA

model for tumour (a) and stroma (b). (c) Component 1 loading for tumour regions. (d) Component 2 loading for tumour regions.

(e) Component 1 loading for stroma. (f) Component 2 loading for stroma. (g) Receiver operator characteristic (ROC) curve to evaluate

Component 1 tumour signature. (h) ROC curve to evaluate component 2 tumour signature. (i) ROC curve to evaluate Component 1 stroma

signature. (j) ROC curve to evaluate Component 2 stroma signature. Colour of component loadings indicates patient group in which feature

was maximally expressed. Positive or negative values in bar chart indicate positive or negative loading to the discriminant signature.

Blue = non-responder, Orange = responder.
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Network and cellular inference

Ingenuity Pathway Analysis© (IPA®) was used to infer the
molecular pathways associated with differentially expressed
genes (DEGs) in responding patients. Stromal DEG’s indi-
cated the potential suppression of IFNγ activity (activation
score � 2.22, p = 0.0254) in responders, evidenced by the

downregulation of several of its downstream transcriptional
products in our data including CASP3, CCL17, DDX58, HLA-
DQB1, IFITM1, PROM1, SELE and VCAM1 (Figure S8a).
Tumour DEGs also implicated the inhibition of oestrogen
receptor (ER) (activation score � 2.891, p = 0.013) and
Wnt-1 (CCN5) (activation score � 2.45, p = 0.003) signalling
pathways in responding patients (Figure S8b,c).
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lung cancer (NSCLC) immunotherapy cohort (IO) response. Patient sample discrimination defined by Components 1 and 2 of sPLS-DA

model for tumour (a) and stroma (b). (c) Component 1 loading for tumour regions. (d) Component 2 loading for tumour regions.

(e) Component 1 loading for stroma. (f) Component 2 loading for stroma. (g) Receiver operator characteristic (ROC) curve to evaluate

Component 1 tumour signature. (h) ROC curve to evaluate Component 2 tumour signature. (i) ROC curve to evaluate Component 1 stroma

signature. (j) ROC curve to evaluate component 2 stroma signature. Colour of component loadings indicates patient group in which feature

was maximally expressed. Positive or negative values in bar chart indicate positive or negative contribution to the discriminant signature.

Blue = non-responder, orange = responder.
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DEG enrichment within the nanostring CTA pathway
annotations showed some associations with the dysregu-
lation of PI3K/Akt signalling, differentiation, MAPK sig-
nalling, cell adhesion and motility, oxidative stress,
interleukin signalling, and GPCR signalling in tumour
regions (Table S3). Similarly, stromal DEGs were repre-
sented in chemokine, GPCR and MAPK signalling path-
ways (Table S3).

SPP1 mRNA (osteopontin) was the most highly
enriched transcript (Log2 FC = 1.5) in ICI-responsive
patients. We therefore sought to assign the cellular source
of this transcript in published NSCLC single-cell RNAseq
data that described 9 distinct cell lineages in NSCLC tis-
sue, including the immune cell subsets (T, NK, B, mye-
loid, MAST) in addition to epithelial cells, fibroblasts
and endothelial cells (GSE131907) [37]. We observed
overrepresentation of SPP1 within the myeloid cell line-
age (cluster 1), with more specific expression within
monocyte-derived macrophages (cluster 5) (Figure S7).
The enrichment of SPP1 mRNA comes despite the
absence of increased parental myeloid and macrophage
cell markers in our data, including CD11c, CD163 and
CD68 (Table S1), suggesting myeloid activation and
secretion of soluble osteopontin is more directive in ICI
response than cellular infiltration alone.

DISCUSSION

The composition of NSCLC tumours and the interactions
that occur at their stromal interface to influence disease
progression and ICI response is unclear. Current thera-
peutic paradigms to reinvigorate cytotoxic anti-tumour
responses are hampered by both T-cell exhaustion and
additional immunosuppressive signals within the TME
that predispose a patient’s resistance to therapy. Our
study is among the first to characterize these phenomena
in both tumour and stromal tissue compartments and
provide simultaneous high-plex insight into the in-situ
biology of NSCLC patients that subsequently
received ICI.

The novelty of this approach for biomarker discovery,
however, comes with several limitations inherent in
emerging clinical questions when combined with cutting-
edge technologies.

The limited size, retrospective nature of our cohort, as
well as the use of single TMA core samples per patient
means that the findings presented here require extensive
validation. In addition, region of interest-based assays
only provide a snapshot of tumour content. Thus, valida-
tion must be performed in prospective cohorts with
orthogonal imaging technologies to delineate the cell
subtypes responsible for ICI response phenotypes.

Limitations notwithstanding, we employed state-of-
the-art techniques to profile NSCLC tumours to gain an
understanding of the underlying tissue architecture.
Overall, the combination of our findings from mIHC,
protein and mRNA differential analysis illustrates the
landscape of the TME to be consistent with our current
understanding of the immune response with several
novel findings. We discuss some of these findings in the
context of their current implications within the field, and
emphasize the discovery nature of this study that serves
to open several routes to understand the influence of the
TME upon ICI outcome.

Our observation that the interaction between CD68+

macrophages and PD1+, FoxP3+ cells is enriched in ICI
refractory tumours, independently of their frequency, is
of interest. Tumour-associated macrophages (TAMs)
have been implicated in both anti-tumour (M1 subtype,
promote CD4/CD8 expansion) and pro-tumour functions
(M2 subtype, CD163+, secrete ARG1 to dampen CD8
response) [38]. The function of PD1 expression on
FoxP3+ Treg cells is poorly defined, however is suggested
to mark a dysfunctional Treg state that expands upon
PD1 blockade to overwhelm anti-PD-1 effect on PD1+

effector T cells, thereby contributing to resistance to ICI
therapy [39, 40]. The functional implication for the inter-
action between this Treg subset and CD68 macrophages
in our data requires further investigation, however,
recent studies have indicated that M2 TAMs may interact
with T cells to prevent their migration and infiltration
into tumour islets [41], and we may be observing a differ-
ent iteration of this interaction in ICI resistant tumours.
Thus, the interactions between immune populations are
indicative of the signalling that occurs to drive macro-
scopic phenotypes and supports the importance of the
next generation of biomarkers that overcome reliance on
cell abundance alone.

Within the GeoMx DSP data, analysis of the stroma
indicated that CD56, CTLA4 and IDO1 were significantly
associated with resistance to ICI therapy. IDO1 has been
shown to be a driver of tumour progression in NSCLC
[42]. It acts to deplete tryptophan, which is required for
CD8 T-cell proliferation and activation, and acts to
reduce CD4 T helper survival [43], and is thus an attrac-
tive target to sensitize patients to ICI. CTLA-4 is a master
inhibitor of T-cell activation responsible for regulating
self-tolerance, a process which is co-opted in immune
evasion [44] and was thus the target of first-generation
ICIs which displayed higher adverse events relative to
current PD-1 blockade [45]. Interestingly, EPCAM was
also enriched in stroma of responding patients, and is a
novel finding that requires further validation, and pro-
vides a confounding observation to that made for tumour
adjacent stromal EPCAM expression and its association
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with more aggressive prostate cancer [46]. Lower tumour
abundance of protein markers GITR, CD4, CD44, CD56
and PD-L2 but not PD-L1 was significantly associated
with response. The findings that NK cell marker, CD56
as well as CD4 marker were associated with ICI resis-
tance require further validation. CD56 within the panel is
a poor marker of NK cells, and similarly, CD4 cell sub-
typing is required to draw conclusions about their roles
in ICI response.

In addition, we demonstrate by mIF that tumour cell
CD44 expression is upregulated in ICI refractory tumours,
and is consistent with DSP data. CD44 is a hallmark of can-
cer cell “stemness” that promotes cancer cell survival and
proliferation [47], and its expression has also been demon-
strated to regulate tumour cell PD-L1 expression in vitro
[48]. The association between tumour cell CD44 expression
and refractory disease, particularly with its implication for
therapeutic targeting to overcome ICI resistance is a novel
finding of this study, and is consistent with recent literature
for its specific role in immunotherapy response [49].

ICI responders demonstrated increased IL2 receptor
alpha (CD25) with concordant mRNA expression of its
cytokine ligand within the stroma. While our data do not
discern the cellular source of CD25 in tumour regions
(i.e., by concomitant increase in Treg markers CD4, FoxP3),
it is curious to note the existence of this IL2 axis between
tumour and stroma compartments. Taken together with the
positive correlation between IL2 mRNA and pro-apoptotic
markers cleaved caspase 9 and BAD, it is likely that endoge-
nous levels of this cytokine have key roles in recruiting and
sustaining the prerequisite cell phenotypes for ICI efficacy
by balancing T-cell status and activity.

Interleukin-2 is a potent cytokine that has pleiotropic
effects on the immune system including Treg mainte-
nance, T-cell differentiation, CD8 T-cell expansion and
cytotoxic activity of CD8 and NK cells. Its small but sig-
nificant upregulation within tumour-associated stroma in
our data may indicate fertile ground for immune cell sur-
vival and tumour clearance. Indeed, the correlation
between stromal IL2 expression and apoptotic markers is
indicative of its pro-cytotoxic role in anti-tumour immu-
nity. IL2 is produced largely by antigen-stimulated CD4+

cells, while also produced by CD8, NK and activated
DCs. Synergistic activity of IL2 with PD-1 checkpoint
inhibition has been demonstrated to enhance CD8 expan-
sion and clearance of pre-clinical viral infection models
[50] by inducing CD127+ and CD44+ memory T-cell phe-
notype despite concomitant increase in T-regs. Low-dose
IL2 has been successfully used to enhance T-cell
responses in the treatment of renal cell carcinoma and
metastatic melanoma [51, 52] however is subject to vari-
able patient tolerance. More recent work to develop a
masked IL2 cytokine that is proteolytically cleaved and

activated by tumour-associated MMPs to promote CD8
cell expansion and overcome resistance to ICI has been
demonstrated [53]. Similarly, a tumour targeting recom-
binant antibody linked to IL2 that localizes to tumour
cells has been shown to induce cytotoxic CD8 expansion
and overcome resistance to ICI [54]. Thus, we provide
here exciting supporting evidence for the therapeutic
value of IL2 within the TME and its requirement in the
efficacy of PD-1/L1 ICI therapy.

Of note, limited other mRNAs were upregulated in
responders but included SPP1 which was highly enriched
in the stroma of responding patients, along with small
increases in SHC3 and MAGEA4. The relative enrichment
of the cytokine SPP1 (osteopontin) mRNA within stroma of
responding patients (Log2 FC 1.5) in our data is novel and
suggests that it may have an important role in generating
an ICI-sensitive niche in tumours. It is curious to note that
an inverse association appears between high stromal SPP1
expression and low expression of tumour cell receptor pair,
CD44, in ICI-sensitive patients, for which the potential
mechanistic link requires further investigation.

Through publicly available scRNAseq data, we show
that SPP1 is highly enriched within monocyte-derived
macrophage populations and may indicate the specific
secretion of this cytokine by activated macrophages. In
addition, SPP1 is thought to be secreted by CD11b+ mye-
loid cells and has been implicated as an immune suppres-
sor that inactivates the cytotoxic activity of CD8 T cells
through interaction with the immune CD44 receptor [55].
Within LUAD TCGA data, SPP1 expression was higher in
EGFR mutant NSCLC tumours, and was associated with
poorer prognosis, with GSEA indicating immunosuppres-
sion in high SPP1 expression group with lower CD8 infil-
tration and higher M2 macrophage infiltration [56].
Similarly, evidence exists for an SPP1+ macrophage—
fibroblast structure in hepatocellular carcinoma that
inhibits the efficacy of PD1 blockade [57].

Conversely, it has also been shown to interact with
both beta integrins and CD44 on proinflammatory T
helper cells. This drives IL-17 production while suppres-
sing IL-10, in addition to inducing the hypomethylation
of IFNγ, promoting its production by T cells, thereby
enhancing immune cell survival [58]. Its upregulation in
our data suggests its role is more closely aligned with the
latter function and highlights the dichotomous roles that
cytokines may have in regulating immune cell activation
and survival depending on cellular context.

The implication by gene set enrichment that IFNγ
activity is suppressed in the pre-treatment TME of ICI-
responsive patients provides a novel, if confounding,
insight for the role of this pleiotropic cytokine. IFNγ is
typically produced by immune cell subsets including
T-cell, NK, T-regs and B cells, however, its distinct
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activities are modulated by the profile of co-secreted
soluble cytokines, including IL2. IFNγ has been shown
to suppress T-reg activity to allow the expansion of T
cells and promote PD-1 response in mouse models [59].
Indeed, a distinct dysregulated CD8+ TIL population in
the TME that demonstrated higher levels of activation,
proliferation and apoptosis with decreased IFNγ pro-
duction was recently discovered [60]. The presence of
such IFNγ suppressed cells associated with advanced
clinical stage and ICI resistance in both clinical and
pre-clinical samples.

Contrarily, IFNγ has also been shown to prevent CD8
expansion [61] and promote T-cell apoptosis [62], and
thus has dichotomous roles. Exhausted CD8 T cells also
lose secretion of IL2 and IFNγ and feature low prolifera-
tion and high expression of inhibitory markers including
PD1, LAG3, TIM-3 [63]. Thus, ICI therapies targeting
PD-1 typically induce IFNγ through reinvigoration of T
cells and activation NK cells. Our data may provide a
snapshot of the pre-treatment TME, whereby IFNγ sup-
pression prevails, and marks the cellular environment
that is thereby predisposed to more effectively activate
upon ICI treatment.

Overall, our study forms a unique insight into the
properties of NSCLC tumours prior to ICI therapy, and
discerns features that distinguish subsequent patient
response. The ability to measure both the immune prote-
ome and transcriptome of FFPE tumour tissue routinely
taken during biopsy or resection provides an opportunity
to study tumour cellularity at unprecedented depth. We
show here in a pilot cohort the strength of such applica-
tions in delineating the cues responsible for patient out-
come. We identify that while cellular infiltration alone in
TMA cores does not associate with ICI response, several
key conditions may be required for a robust immune acti-
vation upon ICI treatment. While further interrogation
and validation of several findings here are required to
make conclusive observations, our study forms a basis for
the application of next-generation technologies for the
next generation of diagnostic pathologies.
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